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A SHORT PROOF OF THE INTEGRALITY OF THE
MACDONALD (q, t)-KOSTKA COEFFICIENTS

LUC LAPOINTE AND LUC VINET

1. Introduction and background. Let As denote the ring of symmetric func-
tions in the variables Xl,X2,... ,Xlv, and denote by (q, t) the field of rational
functions of the parameters q and with rational coefficients. The Macdonald
polynomials (see [13]) J(x; q, t) are symmetric polynomials labelled by parti-
tions 2 (21,22,...), where 21 > 22 > ..., that is, sequences of nonnegative
integers in decreasing order. These polynomials form a basis for As (R) Q(q, t)
and can be characterized as the joint eigenfunctions of the commuting operators
{M, k 0,..., N} defined as follows:

MkN E t(lV-)+(-1)/2"t(x; t)H Tq,x,
I iI

with M 1. Here, the sum goes over all k-element subsets I of { 1,..., N}

(1)

A-(x; t) H x,- t-lx, (2)
iI

X Xj
j(1 N)\I

and Tq,x, stands for the q-shifted operator in the variable xi (Tq,x,f(xl,..., xi,...)
f(xl,..., qxi,...)). This notation will be used throughout the paper.
The eigenvalue equations that the Macdonald polynomials satisfy are con-

veniently written in terms of the generating function

N

MN(X; q, t) E MkNXk’ (3)
k=O

where X is an arbitrary parameter. With J, a set of cardinality IJI j, we shall also
use the notation Mj(X; q, t) to designate Mj(X; q, t) in the variables xi, it J. If
e(2) denotes the number of nonzero parts of 2, for (2) < N we have

MN(X; q, t)J,(x; q, t) a(X; q, t)J,(x; q, t) (4)
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