L² ESTIMATES FOR AVERAGING OPERATORS ALONG CURVES WITH TWO-SIDED *k*-FOLD SINGULARITIES

SCIPIO CUCCAGNA

§0. Introduction. In this note we prove in high dimensions a result about averaging operators along curves first proved for \mathbb{R}^2 by Phong and Stein [7], [8], using their same methods.

The issues raised here are part of the general problem of finding sharp Sobolev estimates for Fourier integral operators (FIOs) whose canonical relation is not a canonical graph.

We recall that to any FIO from, say, $C_0^{\infty}(X) \to \mathscr{D}'(Y)$, for X and Y two given manifolds, is associated a Lagrangian submanifold of $T^*(X \times Y)$ —let us call it \mathscr{L} —which contains the interesting part of the information about the regularity properties of the operator (see [2]). We say that an FIO is nondegenerate when the left and right projections $d\pi_L$ (resp., $d\pi_R$) of \mathscr{L} on T^*X (resp., T^*Y) are local diffeomorphisms. L^2 estimates for nondegenerate FIOs can be found in [2], L^p estimates in [14]. Even though there is a general result about L^2 estimates for degenerate FIOs (see [2] and [3, p. 30]), much remains to be understood about sharp estimates for special classes of degenerate FIOs. The bestknown operators of this kind are those where the maps $d\pi_L$ and $d\pi_R$ have folds (or k-folds with k = 1); that is, the (common) singular set is a submanifold Σ of codimension 1 in \mathscr{L} transversal to the kernel of the derivatives of $d\pi_L$ and $d\pi_R$, and the determinants are zero to the order k for k = 1 in Σ . (If $k \ge 1$, we have the so-called k-folds (see [8]).) For such operators, k = 1, L^2 estimates can be found in [4] and L^p estimates in [7], [8], [13], and [15]. For FIOs $C_0^{\infty}(\mathbb{R}^2) \to \mathscr{D}'(\mathbb{R}^2)$ with averaging operators, the Lagrangian \mathscr{L} is a conormal bundle. Other more degenerate cases are discussed in the series by Phong and Stein [8]–[12] and by Seeger [13], among them those with k-folds with k > 1.

For the case when only one of the two projections $d\pi_L$, $d\pi_R$ has singularities of some special type and there are no hypotheses on the singularities of the other, we refer, for instance, to [1], [8], [13], and the references therein.

Here we prove sharp L^2 estimates for FIOs $C_0^{\infty}(\mathbb{R}^n) \to \mathscr{D}'(\mathbb{R}^n)$ with k-folds and where the Lagrangian is the conormal bundle of a submanifold of codimension n-1 in $\mathbb{R}^n \times \mathbb{R}^n$. We are able also to obtain a new proof of a classical result of Melrose and Taylor [4]—that is, the case k = 1—without the assumption that the Lagrangian is a conormal bundle.

As we already mentioned, what we do here arises naturally from work by

Received 19 February 1996. Revision received 3 September 1996.