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MULTIPLE SOLUTIONS TO THE PLATEAU PROBLEM
FOR NONCONSTANT MEAN CURVATURE

FABRICE BETHUEL AND OLIVIER REY

1. Introduction. The questions that we investigate originate from the classical
so-called plateau problem. F being a Jordan curve in R3, the Plateau problem
consists in finding disc-type surfaces of minimal area spanning F. Such a surface
has mean curvature zero, and it may be parametrized by a function

which satisfies

u: D2 {(x,y)e R2/x2 + y2 < 1} Ra

(1.1) Au 0 in D2,

luxl 2 -lull 2 Ux, u 0 in D2,

(1.3) uloo is a continuous monotone parametrization of F.

Conversely, a solution to (1.1), (1.2), (1.3) parametrizes, away from branch points, a
surface with mean curvature zero spanning F, whose area is not necessarily minimal
but is stationary.

In order to give this problem a variational structure, one often prefers to consider
the related Dirichlet-type problem

Au=0 in D2

(I) , onD2

where y is a given function from dD2 to Ra. Then one can take advantage of the
freedom that we have in the choice of y as a parametrization of F to get the
conformality condition (1.2) satisfied; see for instance [7], I- 17], [ 18,1, and references
therein.

Since a solution to the classical Plateau problem has mean curvature zero, a
natural generalization is to seek for surfaces spanning F whose mean curvature is
a given constant H e R. Equation (1.1) is then replaced by

(1.4) Au 2Hu ^ u in D2,
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