THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDICES

CARLOS E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

1. Introduction. In this paper we study the initial value problem (IVP) for the Korteweg-de Vries equation

(1.1)
$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + \frac{\partial (u^2)}{\partial x} = 0 \quad t, x \in \mathbb{R}, \\ u(x, 0) = u_0(x). \end{cases}$$

We are interested in well-posedness results for data in classical Sobolev spaces of negative order, i.e. $u_0 \in H^{-s}(\mathbb{R})$, with $s \ge 0$. Here the notion of well-posedness includes the existence, uniqueness, persistence property (i.e. the solution describes a continuous curve in X whenever $u_0 \in X$) and the continuous dependence of the solution upon the data.

Our main result (see Theorem 1 below) shows that (1.1) is locally well posed in $H^{-s}(\mathbb{R})$ for s < 5/8. Hence, taking $s \in (1/2, 5/8)$, it follows that the IVP (1.1) has a unique local solution for any bounded measure u_0 . In particular, for $u_0 = \delta$ this answers (locally) the uniqueness questions left open by Y. Tsutsumi [11, Remark 3.1].

The IVP (1.1) has been considered in many works. On one hand, there are existence results of weak solutions corresponding to rough data. Using the inverse scattering method, T. Kappeler [4] showed that if u_0 is a real measure satisfying an appropriate decay at infinity, then (1.1) has a global solution. In [5] T. Kato established global existence results for data $u_0 \in L^2$ (see also [9]). In [11] Y. Tsutsumi proved the existence of a global solution of (1.1) for initial data a positive measure. His argument combines the smoothing effects and the existence results deduced in [5] for the modified KdV and the Miura transformation. On the other hand, there are well-posedness results. In this direction, J. Bourgain [2] has recently shown that (1.1) is locally well posed in L^2 . Due to the second conservation law, this result extends globally in time. Previous results guaranteed that (1.1) is locally and globally well posed in H^s with s > 3/4 and $s \ge 1$ respectively (see [7]). For further references and comments see [8].

Received 27 October 1992.

Kenig and Ponce supported by NSF grants.

Vega supported by a DGICYT grant.