LIMITS OF SOLITON SOLUTIONS

F. GESZTESY, W. KARWOWSKI, AND Z. ZHAO

TABLE OF CONTENTS

1.	Introduction
2.	Reflectionless potentials and N-soliton KdV-solutions
3.	Pointwise convergence results as $N \rightarrow \infty$
4.	Some technical results
5.	Spectral properties of H_{∞}
6.	KdV-solutions in the limit $N \to \infty$
Re	ferences

1. Introduction. Our main concern in this paper is a detailed study of N-soliton solutions $V_N(t, x)$ of the Korteweg-de Vries (KdV) equation in the limit $N \to \infty$. In particular, if $V_{\infty}(t, x)$ denotes that limit of $V_N(t, x)$ as $N \to \infty$ (in a sense to be made precise below) we shall undertake a careful investigation of the spectral (and scattering) properties of the associated Schrödinger operator $H_{\infty}(t) = -(d^2/dx^2) + V_{\infty}(t, .)$ in $L^2(\mathbb{R})$.

In order to describe our approach in more detail, we briefly recall some of the basic facts of N-soliton solutions $V_N(t, x)$ of the KdV-equation. They can be represented as

$$V_N(t, x) = -2\partial_x^2 \ln[\tau_N(t, x)], \quad (t, x) \in \mathbb{R}^2,$$
(1.1)

where τ_N denotes the $N \times N$ determinant

$$\tau_N(t, x) = \det[\mathbf{1}_N + C_N(t, x)],$$

$$C_N(t, x) = [c_j c_\ell (\kappa_j + \kappa_\ell)^{-1} e^{4(\kappa_j^3 + \kappa_\ell^3)t - (\kappa_j + \kappa_\ell)x}]_{j,\ell=1}^N,$$

$$c_j > 0, \, \kappa_j > 0, \, 1 \le j \le N, \, N \in \mathbb{N},$$
(1.2)

and they fulfill the KdV-equation

$$KdV(V_N) = V_{N,t} - 6V_N V_{N,x} + V_{N,xxx} = 0.$$
(1.3)

The corresponding self-adjoint Schrödinger operator $H_N(t)$ in $L^2(\mathbb{R})$ defined by

$$H_N(t) = -\frac{d^2}{dx^2} + V_N(t, .), \qquad \mathcal{D}(H_N(t)) = H^2(\mathbb{R}), \qquad t \in \mathbb{R}$$
(1.4)

Received 19 November 1991.