AMPLE WEIL DIVISORS ON K3 SURFACES WITH DU VAL SINGULARITIES

VALERY ALEXEEV

0.1. The motivation of this paper comes from the study of Q-Fano varieties. Q-Fanos are one of the classes of (singular) varieties that naturally appear in the Minimal Model Program; see [KMM], [Ko], [Mr], or [W] for the introduction.
0.2 . Nonsingular Fano varieties (i.e., varieties with the ample anticanonical class $-K_{X}$) with Picard number $\rho(X)=1$ were classified by G. Fano and V. A. Iskovskikh; see [I1], [I2]. Among the first steps in this classification are the following.
(i) Find a smooth surface S in the anticanonical linear system $\left|-K_{X}\right|$ (done in [Sh]). By adjunction formula and Kodaira vanishing, it is a K3 surface.
(ii) Restrict $\left|-K_{X}\right|$ on S. It is an ample linear system. Now use the following to obtain the description of $\left|-K_{X}\right|$.

Theorem 0.2.1 ([SD]). Let $|D|$ be an ample complete system on a smooth K3 surface. Then $|D|$ is either free or has the single base component C of multiplicity one and $|D|=C+|n E|$ where $|E|$ is an elliptic pencil.
0.3. For the singular Q-Fanos one can try to use the same approach. The first difference is that, if X has a non-Gorenstein singularity, then locally in a neighborhood of such a point a general element of $\left|-K_{X}\right|$ should have Du Val singularity. The second observation is that $-K_{X}$, restricted on S, is not a Cartier divisor any more but only a Weil divisor such that its multiple is an ample Cartier divisor.

Therefore, we see that in order to work with the singular case we have to consider a $K 3$ surface with Du Val singularities and an ample Weil divisor on it.
0.4 . Some results in the direction of 0.2 .(i) are contained in [A]. Among them is the following theorem.

Theorem 0.4.1. Let X be a \mathbf{Q}-Fano of degree $d=\left(-K_{X}\right)^{3} \geqslant 4$. Then one of the following is true.
(i) A general element $S \in\left|-K_{X}\right|$ has (not worse than) Du Val singularities;
(ii) X is birationally equivalent to another \mathbf{Q}-Fano X_{1} such that a general element $S \in\left|-K_{X_{1}}\right|$ has $D u$ Val singularities;
0.5 . This paper gives some answers for the second half of 0.2 . Here we study the

Received 22 May 1991.

