ON ISOSPECTRAL POTENTIALS ON TORI

CAROLYN S. GORDON and THOMAS KAPPELER

1. Introduction. Given a square integrable function q on a flat torus $T=\mathbb{R}^{d} / \mathscr{L}$, denote by $\operatorname{spec}(q)$ the eigenvalue spectrum of the Schrödinger operator $-\Delta+q$ and set $\operatorname{Iso}(q)=\left\{q^{\prime} \in L^{2}(T)\right.$: $\left.\operatorname{spec}(q)=\operatorname{spec}\left(q^{\prime}\right)\right\}$, the isospectral set of q. In case $d=1$ (i.e., T is a circle), all the isospectral sets are well known; generically, they are infinite-dimensional tori. In dimension $d \geqslant 2$ there is evidence that the isospectral sets are small. However, the only isospectral sets known are those of the constant potentials. They are uniquely determined by their spectra. A natural starting point in studying dimensions $d \geqslant 2$ is to consider Iso (q) for q a completely separable potential on a rectangular torus $T=\mathbb{R}^{d} /\left(a_{1} \mathbb{Z} \times \cdots \times a_{d} \mathbb{Z}\right)$. We say q is completely separable if q can be written in the form $q=\sum_{i=1}^{d} q_{i}\left(x_{i}\right)$ where $q_{i} \in L^{2}\left(\mathbb{R} / a_{i} \mathbb{Z}\right)$. For such potentials $q, \sum_{i=1}^{d} \operatorname{Iso}\left(q_{i}\right) \subseteq \operatorname{Iso}(q)$ where Iso $\left(q_{i}\right)$ is the isospectral set of the potential q_{i} in $L^{2}\left(\mathbb{R} / a_{i} \mathbb{Z}\right)$. Thus in this case Iso (q) being small means that the above inclusion is in fact an equality. Therefore, we ask
(Q) does $\operatorname{Iso}(q)=\sum_{i=1}^{d} \operatorname{Iso}\left(q_{i}\right)$?

Question (Q) is equivalent to the following two questions.
(Q1) If q is completely separable and $\operatorname{spec}(\tilde{q})=\operatorname{spec}(q)$, is \tilde{q} completely separable?
(Q2) If q and \tilde{q} are isospectral, completely separable potentials, are the onedimensional potentials q_{i} and \tilde{q}_{i} isospectral, $1 \leqslant i \leqslant d$ (up to possible permutations)?

Our interest in this problem is motivated by a paper of Eskin, Ralston, and Trubowitz [ERT] which addresses question (Q1). They answer positively question (Q1) for generic rectangular tori by constructing certain spectral invariants involving a decomposition of q into a sum of one-dimensional potentials. (See also [MN] and [S].)

One of our main results is an affirmative answer to (Q) in dimension $d=2,3$ for a large class of rectangular tori, including all rational tori. The extra hypothesis on the tori is used only for question (Q 2) and can be dropped completely in case $d=2$ if we impose a mild regularity condition on the potentials.

[^0]
[^0]: Received 15 May 1989. Received revision 21 May 1990.
 Gordon partially supported by NSF grant \# 8502084. Kappeler partially supported by NSF grant.

