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AN ISOPERIMETRIC INEQUALITY WITH
APPLICATIONS TO CURVE SHORTENING

MICHAEL E. GAGE

1. Introduction. In this note we prove the isoperimetric inequality
L
w-ﬁ— < fo k2 ds

for closed, convex C? curves in the plane. L, A and k are the length of the curve,
the area it encloses, and its curvature. The inequality does not necessarily hold
for nonconvex curves. We use the inequality to show that when a convex curve is
deformed along its normal at a rate proportional to its curvature the iso-
perimetric ratio L2/ A decreases. In some sense the curve is becoming more
circular.

Notation and useful formulae are described in the next section, the
isoperimetric inequality is proved in section 3 and the application to curve
shortening is sketched in section 4.
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2. Notation. We let X (s) describe the closed, convex curve vy, with arclength
parameter s. T(s) and N(s) represent the unit tangent and inward normal vectors
which form a frame whose orientation agrees with that of the plane. The
curvature at s is denoted k(s) and the support function p(s) = <X, — N). L and
A are the length of y and the area of the lamina it encloses.

The length and area can be expressed in terms of the support function and the
curvature: From Green’s theorem one derives
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Using X'(s) = T(s) and T'(x) = kN(s) we obtain
L L .
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