DECAY OF SOLUTIONS OF SCHROEDINGER EQUATIONS

TOMAS SCHONBEK

1. In this paper we develop some simple results which are useful to study the decay of solutions of equations of the type

$$\frac{du}{dt} = iHu,\tag{1}$$

where H is a self-adjoint operator in a Hilbert space. We then apply these results to prove that if $H = \Delta + V$, where Δ is the self-adjoint Laplace operator in $L^2(\mathbb{R}^3)$ and V is an operator of multiplication by a real valued element of $L^{(3/2)-\epsilon} \cap L^{(3/2)+\epsilon} (0 < \epsilon \le 1/2)$ of suitably small norm, then solutions of (1) with initial data in L^1 are of order $|t|^{-3/2}$ for $|t| \to \infty$. This confirms, for n = 3, a conjecture made by Strichartz in [5]. We conclude the paper with some remarks on extending this result to the case $n \ge 3$.

The following notation will be used throughout. R, C will denote respectively the field of real numbers, the field of complex numbers. If $z \in C$, we write $\Re(z)$, $\vartheta(z)$ to denote the real and imaginary parts of z, respectively. If f is a complex valued function on \mathbb{R}^n and if $p \in [1, \infty]$, $||f||_p$ denotes the $L^p(\mathbb{R}^n)$ -norm of f. Integrals in which no region of integration is specified are over the whole space in which the variable of integration is defined. If \mathcal{K} is a Hilbert space, $\mathfrak{B}(\mathcal{K})$ denotes the space of bounded operators on \mathcal{K} . Γ denotes the standard gamma function; i.e.,

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \quad \text{for } x > 0.$$

As is usual, by a solution of (1) in the Hilbert space \mathcal{K} we understand a function of the form $u(t) = e^{itH}f, f \in \mathcal{K}$.

2. Let \mathcal{K} be a complex Hilbert space, H a self-adjoint operator in \mathcal{K} . For $\mathfrak{R}(z) \neq 0$, we set $R(z) = (z - iH)^{-1}$. For j = 1, 2; let N_j be a map from \mathcal{K} to $[0, \infty]$ such that

a. If $D_j = \{f \in \mathcal{H} \mid N_j(f) < \infty\}$, then D_j is a subspace of \mathcal{H} and N_j is a norm in D_j ;

b. If $f_n \in D_j$ for n = 1, 2, ...; if $f_n \to f$ in \mathcal{H} for $n \to \infty$, and if $\limsup_{n \to \infty} N_j(f_n) < \infty$, then $f \in D_j$.

THEOREM 1. Let C, γ be nonnegative real numbers. The following statements are equivalent

Received October 31, 1978. Revision received December 12, 1978.