SINGULARITIES AND ENERGY DECAY IN **ACOUSTICAL SCATTERING**

R. B. MELROSE

1. Statement of results. Suppose that $\Omega \subset \mathbb{R}^n$, $n \ge 2$, is a non-compact connected complete C^{∞} submanifold with compact boundary, $\partial \Omega$. In $\mathbf{R}_{t} \times \Omega$ we consider the wave equation with Dirichlet boundary condition:

In odd dimensions we shall also consider the same problem but with Neumann boundary condition:

Here, ∂_{ν} is the inward unit normal vector field at $\partial \Omega$.

The closure in the energy norm

$$E(v,w) = \int_{\Omega} \left(\sum_{j=1}^{n} |\partial_{x_j} v(x)|^2 + |w(x)|^2 \right) dx$$

of the space $C_0^{\infty}(\Omega) \times C_0^{\infty}(\Omega)$ of pairs of C^{∞} , complex-valued functions on \mathbb{R}^n with compact supports in Ω is a Hilbert space

$$H(\Omega) = H_1(\Omega) \oplus L_2(\Omega)$$

such that if $(u_0, u_1) \in H(\Omega)$ the solution of (1.1) is unique and $\underline{u}(t) = (u(t, \cdot), t)$ $\partial_t u(t, \cdot) \in H$ for all $t \in \mathbb{R}$. The maps $\underline{u}(0) = (u_0, u_1) \mapsto \underline{u}(t)$ define a unitary group on $H(\Omega)$.

For the solutions to (1.1)' we use the second energy norm:

$$E_2(v, w) = \int_{\Omega} |\Delta v|^2 + |\nabla v|^2 + |\nabla w|^2 + |w|^2.$$

The closure of the linear space of pairs (v, w) of C^{∞} functions on Ω with bounded supports and $\partial_v v = \partial_v w = 0$ on $\partial \Omega$ defines a Hilbert space $H_N(\Omega)$ on which the solution to (1.1)' provides a unitary group, $U_N(t)$.

Received July 17, 1978.