SOME BIRATIONAL INVARIANTS FOR ALGEBRAIC REAL HYPERSURFACES

S. M. WEBSTER

Introduction.

In this paper we consider real hypersurfaces M defined by real polynomial equations in complex projective space \mathbb{P}_n . Our aim is to attach to such M invariants under the pseudo-group of birational mappings of \mathbb{P}_n . This is of interest because any biholomorphic mapping between algebraic real hypersurfaces with non-degenerate Levi forms must be algebraic [3]. Also, conditions were given in [3] which ensure that the mapping must be birational.

The first section of this paper is concerned with rational anti-polarities. This is a generalization of the concept of the anti-polarity induced by a non-degenerate hermitian form. Associated to a real hypersurface M as above there is a rational anti-polarity which is locally invariant under biholomorphic transformation. This idea goes back essentially to B. Segre [2]. The function sending a point to its polar variety gives an immersion of a non-degenerate M into a real hyperquadric.

In the second section we consider birational mappings between irreducible anti-polarities. The results are applied in the third section to a family of polynomial deformations of the unit sphere in \mathbb{C}^n . We show that biholomorphic equivalence reduces to affine equivalence for this family. As a corollary we get a classification theorem for certain central quadrics in \mathbb{C}^n . This provides a generalization of the ellipsoid classification theorem of [3].

1. Rational anti-polarities.

Consider complex projective space \mathbb{IP}_n with homogeneous coordinates $\zeta = (\zeta_0, \dots, \zeta_n)$. A non-zero real polynomial $R = R(\zeta, \overline{\zeta})$ will be called *bihomogeneous of degree m* if $R(s\zeta, t\zeta) = (s\overline{t})^m R(\zeta, \overline{\zeta})$ for all complex s, t. We let $\overline{\eta} = (\overline{\eta}_0, \dots, \overline{\eta}_n)$ and consider $R(\zeta, \overline{\eta})$. The *polar variety* of the point η relative to R is

$$Q_{\eta} = \{ \zeta : R(\zeta, \, \overline{\eta}) = 0 \},$$

which is a complex hypersurface of degree m in \mathbb{P}_n . The Q_n make up a nonlinear system of varieties in general.

We shall call the correspondence $\eta \to Q_{\eta}$ the rational anti-polarity associated to R or the *R*-anti-polarity. Since $R(\zeta, \bar{\zeta})$ is real, it follows that $R(\zeta, \bar{\eta}) = 0$ if

Received August 12, 1977. Partially supported by NSF.