MOEBIUS-INVARIANT FUNCTION SPACES ON BALLS AND SPHERES

ALEXANDER NAGEL AND WALTER RUDIN

I. Introduction.

Throughout this paper, *n* denotes a positive integer, and \mathbb{C}^n is the vector space of all ordered *n*-tuples $z = (z_1, \dots, z_n)$ of complex numbers z_i , made into a Hilbert space by means of the usual inner product

$$\langle z, w \rangle = z_1 \bar{w}_1 + \cdots + z_n \bar{w}_n$$

and the corresponding norm

$$|z| = \langle z, z \rangle^{1/2}.$$

We put

$$B = \{z \in \mathbb{C}^n : |z| < 1\},\$$

$$S = \{z \in \mathbb{C}^n : |z| = 1\},\$$

$$\bar{B} = B \cup S.$$

Thus B and \overline{B} are the open and closed unit balls of \mathbb{C}^n , respectively. Their boundary S is a sphere of (real) dimension 2n - 1 which carries a (unique) rotation-invariant probability measure σ , defined on the Borel subsets of S. The notation $L^p(S)$, for the usual Lebesgue spaces, refers to this measure σ .

The *Moebius group*, denoted by \mathfrak{M} , is the group of all one-to-one holomorphic maps of B onto B. The members of \mathfrak{M} are described in detail in Part II, but let us mention immediately that each $\phi \in \mathfrak{M}$ extends to a homeomorphism of \overline{B} onto \overline{B} , and that ϕ therefore carries S to S.

[Note that the dimension n is not explicitly stated in the notations B, S, σ , \mathfrak{M} . Since no more than one value of n will occur in any discussion, this simplified notation should cause no confusion.]

A space X of functions with domain $\overline{B}(\text{or } S, \text{ or } B)$ will be called a *Moebius* space, or an *M*-invariant space, if the composition $f \circ \phi$ belongs to X for every $f \in X$ and every $\phi \in \mathfrak{M}$. The following Moebius spaces will occur:

 $C(\bar{B})$: the continuous complex functions on \bar{B} .

C(S): the continuous complex functions on S.

 $C_0(B)$: those $f \in C(\overline{B})$ that vanish on S.

A(B): those $f \in C(\overline{B})$ that are holomorphic in B.

Received May 17, 1976. Both authors were partially supported by NSF Grant MPS 75-06687.