ON THE EXTENSION OF TURAN'S INEQUALITY TO JACOBI POLYNOMIALS

By George Gasper

1. Introduction. During the 1940's, while investigating the zeros of Legendre polynomials $P_{n}(x)$, P. Turán [10] observed that

$$
\begin{equation*}
P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0, \quad-1 \leq x \leq 1 \tag{1.1}
\end{equation*}
$$

with equality only for $x= \pm 1$. Shortly thereafter many proofs of (1.1) appeared, and analogous results were obtained for ultraspherical, Laguerre, and Hermite polynomials and for Bessel functions [3; 209]. In 1962 Szegö [8] extended (1.1) to a large class of Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$. He showed that if $\beta \geq|\alpha|, \alpha>-1$, and $R_{n}(x ; \alpha, \beta)=P_{n}^{(\alpha, \beta)}(x) / P_{n}^{(\alpha, \beta)}(1)$, then

$$
\begin{align*}
\Delta_{n}(x ; \alpha, \beta)=R_{n+1}^{2}(x ; \alpha, \beta)-R_{n}(x ; \alpha, \beta) R_{n+2}(x ; \alpha, \beta)> & 0 \tag{1.2}\\
& -1<x<1 .
\end{align*}
$$

In addition he conjectured that (1.2) also holds for the triangle

$$
U=\{(\alpha, \beta):-1<\alpha<0, \alpha<\beta<-\alpha\} .
$$

The main purpose of this paper is to prove the following theorem in which we confirm Szegö's conjecture for most of the triangle U.

Theorem 1. Let $\Delta_{n}(x ; \alpha, \beta), n=0,1, \cdots$, be defined as in (1.2) and let

$$
V=\left\{(\alpha, \beta): \beta \geq \alpha>-1,(\beta-\alpha)(\alpha+\beta)\left(4 \beta^{2}+4 \alpha+1\right) \geq 0\right\}
$$

Then

$$
\begin{gather*}
\Delta_{n}(x ; \alpha, \beta)>0 \text { when }-1<x<1 \text { and }(\alpha, \beta) \varepsilon V \tag{1.3}\\
\Delta_{n}(1 ; \alpha, \beta)=0 \text { when } \alpha, \beta>-1 \tag{1.4}
\end{gather*}
$$

$$
\Delta_{n}(-1 ; \alpha, \beta) \begin{cases}>0, & \beta>\alpha>-1 \tag{1.5}\\ =0, & \beta=\alpha>-1 \\ <0, & -1<\beta<\alpha\end{cases}
$$

Our set V contains the line $\alpha=\beta$ (ultraspherical case), the set $\{(\alpha, \beta): \beta \geq|\alpha|$, $\alpha>-1\}$ considered by Szegö and that part of U which is on or to the left of the parabola $4 \beta^{2}+4 \alpha+1=0$; see the figure.

From Theorem 1 we derive
Corollary 1. Let $p_{n}(x ; \lambda)=P_{n}^{(\lambda)}(x) / P_{n}^{(\lambda)}(1)$, where $P_{n}^{(\lambda)}(x)$ denotes the Received June 23, 1969. Research supported by the National Research Council of Canada.

