RADIAL ENGULFING IN CODIMENSION THREE

BY PERRIN WRIGHT

1. Introduction. Let M^n be a piecewise linear manifold without boundary, U an open subset of M^n , P a finite polyhedron in M, Q a subpolyhedron of P lying in U. Let dim $Q \leq n - 3$, dim (P - Q) = r.

Bing has proved the following general radial engulfing theorem [1].

THEOREM A. (Bing) Suppose $r \leq n - 4$ and $\{A_{\alpha}\}$ is a collection of sets such that finite r-complexes can be pulled into U along $\{A_{\alpha}\}$. Then for each $\epsilon > 0$, there is an engulfing isotopy $H: M^n \times [0, 1] \to M^n$ such that $H_0 = id$., $H_{\iota} = id$. on $Q, P \subset H_1(U)$, and for each $x \in M^n$ there are r + 1 elements of $\{A_{\alpha}\}$ such that the track $H(x \times [0, 1])$ lies in the ϵ -neighborhood of the sum of these r + 1 elements. (See [1] for definitions.)

Bing asks whether Theorem A holds when r = n - 3. We show that if one is content with a slightly larger bound on the orbits $H(x \times [0, 1])$, the answer is yes.

2. Radial engulfing in codimension three. For any subset $A \subset M^n$, let $N_{\epsilon}(A)$ denote the ϵ -neighborhood of A in M^n . In addition, we define the double ϵ -neighborhood of an element A_{α} of the collection $\{A_{\alpha}\}$ as follows:

 $N_{\epsilon}^{2}(A_{\alpha}) = \{x \in M^{n}: x \text{ lies in } N_{\epsilon}(A_{\beta}) \text{ for some } A_{\beta} \text{ which intersects } N_{\epsilon}(A_{\alpha})\}.$

In generalizing Theorem A to the case r = n - 3, it is necessary to employ Zeeman's piping lemma. Piping apparently necessitates the use of the double ϵ -neighborhood; certainly the theorem would be more pleasing if this concept could be avoided.

THEOREM 1. Let dim P = n - 3. Suppose $\{A_{\alpha}\}$ is a collection of sets such that finite (n - 3)-complexes can be pulled into U along $\{A_{\alpha}\}$. Then for each $\epsilon > 0$ there is an engulfing isotopy $h_{\iota} : M \to M$ such that $h_0 = id., h_{\iota} = id.$ on $Q, P \subset h_1(U)$, and for each $x \in M$ there are n - 1 elements of $\{A_{\alpha}\}$ such that the track $\{h_{\iota}(x)\}$ lies in the union of the ϵ -neighborhoods of n - 2 of these elements and the double ϵ -neighborhood of the remaining element.

Proof of Theorem 1. Let $H^1 : P \times I \to M$ be a homotopy such that $H^1(p, 0) = p, H^1[(P \times 1) \cup (Q \times I)] \subset U$, and for each $p \in P, H^1(p \times I)$ lies in some A_{α} .

Let T be a cylindrical triangulation of $P \times I$ such that for each $\sigma \in T$,

Received May 13, 1969. The author thanks John Bryant for helpful conversations.