RADIAL ENGULFING IN CODIMENSION THREE

By Perrin Wright

1. Introduction. Let M^{n} be a piecewise linear manifold without boundary, U an open subset of M^{n}, P a finite polyhedron in M, Q a subpolyhedron of P lying in U. Let $\operatorname{dim} Q \leq n-3$, $\operatorname{dim}(P-Q)=r$.

Bing has proved the following general radial engulfing theorem [1].
Theorem A. (Bing) Suppose $r \leq n-4$ and $\left\{A_{\alpha}\right\}$ is a collection of sets such that finite r-complexes can be pulled into U along $\left\{A_{\alpha}\right\}$. Then for each $\epsilon>0$, there is an engulfing isotopy $H: M^{n} \times[0,1] \rightarrow M^{n}$ such that $H_{0}=i d ., H_{t}=i d$. on $Q, P \subset H_{1}(U)$, and for each $x \in M^{n}$ there are $r+1$ elements of $\left\{A_{\alpha}\right\}$ such that the track $H(x \times[0,1])$ lies in the ϵ-neighborhood of the sum of these $r+1$ elements. (See [1] for definitions.)

Bing asks whether Theorem A holds when $r=n-3$. We show that if one is content with a slightly larger bound on the orbits $H(x \times[0,1])$, the answer is yes.
2. Radial engulfing in codimension three. For any subset $A \subset M^{n}$, let $N_{\epsilon}(A)$ denote the ϵ-neighborhood of A in M^{n}. In addition, we define the double ϵ-neighborhood of an element A_{α} of the collection $\left\{A_{\alpha}\right\}$ as follows:

$$
N_{\epsilon}^{2}\left(A_{\alpha}\right)=\left\{x \varepsilon M^{n}: x \text { lies in } N_{\epsilon}\left(A_{\beta}\right) \text { for some } A_{\beta} \text { which intersects } N_{\epsilon}\left(A_{\alpha}\right)\right\} .
$$

In generalizing Theorem A to the case $r=n-3$, it is necessary to employ Zeeman's piping lemma. Piping apparently necessitates the use of the double ϵ-neighborhood; certainly the theorem would be more pleasing if this concept could be avoided.

Theorem 1. Let $\operatorname{dim} P=n-3$. Suppose $\left\{A_{\alpha}\right\}$ is a collection of sets such that finite $(n-3)$-complexes can be pulled into U along $\left\{A_{\alpha}\right\}$. Then for each $\epsilon>0$ there is an engulfing isotopy $h_{t}: M \rightarrow M$ such that $h_{0}=i d ., h_{t}=i d$. on $Q, P \subset h_{1}(U)$, and for each $x \in M$ there are $n-1$ elements of $\left\{A_{\alpha}\right\}$ such that the track $\left\{h_{t}(x)\right\}$ lies in the union of the ϵ-neighborhoods of $n-2$ of these elements and the double ϵ-neighborhood of the remaining element.

Proof of Theorem 1. Let $H^{1}: P \times I \rightarrow M$ be a homotopy such that $H^{1}(p, 0)=p, H^{1}[(P \times 1) \cup(Q \times I)] \subset U$, and for each p ع $P, H^{1}(p \times I)$ lies in some A_{α}.

Let T be a cylindrical triangulation of $P \times I$ such that for each $\sigma \varepsilon T$,

Received May 13, 1969. The author thanks John Bryant for helpful conversations.

