SPLIT DILATIONS OF FINITE CYCLIC GROUPS WITH APPLICATION TO FINITE FIELDS

By Shair Ahmad

1. Let C be a finite cyclic group of order $|C|=d e$, written multiplicatively, where d and e are positive integers. We let ω_{e} be a fixed primitive e-th root of unity of C, and define $U_{d, e}^{(r)}=\left\{x_{\varepsilon} C \mid x^{d}=\omega_{e}^{r}\right\}$ for each integer $r, 0 \leq r<e$. It follows that the sets $U_{d, e}^{(r)}$ are the cosets of the homomorphism from C to the additive group of crs $(\bmod e)$ which carries α in $U_{d, e}^{(r)}$ into $r(\bmod e)$, where crs $(\bmod e)$ denotes the complete set of least residues modulo e. We define $K_{d, e}$ to be the set of all mappings of the form

$$
\begin{equation*}
\varphi: x \rightarrow \alpha_{r} x \quad\left(x \varepsilon U_{d, e}^{(r)}, r=0, \cdots, e-1\right) \tag{1.1}
\end{equation*}
$$

over C, where $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{e-1}$ are any elements of $U_{d, e}^{(0)}$. It follows [4] that $K_{d, e}$ is an abelian group (on composition) of order d^{e}; each mapping of the form (1.1) is a permutation of C. Let $\bar{K}_{d, \theta}$ be the set of all permutations of the form (1.1) of C, where the coefficients α_{r} are any elements of C not necessarily belonging to $U_{d, e}^{(0)}$. It follows [4] that $\bar{K}_{d, e}$ is a permutation group of order $e!d^{e}$, containing $K_{d, e}$ as a normal subgroup. It is easy to verify that a mapping of the form (1.1) with arbitrary coefficients α_{r} need not be a permutation of C.

Let $G F(q)$ be a finite field of order q. A polynomial in the ring $G F[q, x]$ of polynomials in x over $G F(q)$ is called a permutation polynomial if it permutes the elements of $G F(q)$. A polynomial $f(x)$ is said to represent a mapping φ of $G F(q)$ if $f(x)=\varphi(x)$ for all $x \varepsilon G F(q)$. Let the cyclic group C be the multiplicative group of $G F(q)$. Wells [4] has shown that every permutation of $G F(q)$ that fixes 0 and whose restriction to C belongs to $K_{d, e}$, is represented by a permutation polynomial of the form

$$
\begin{equation*}
f(x)=x\left(g\left(x^{d}\right)\right)^{e}, \tag{1.2}
\end{equation*}
$$

and vice versa. Similarly, any permutation of $G F(q)$ that fixes 0 and whose restriction to C belongs to $\bar{K}_{d, e}$, is represented by a permutation polynomial of the form

$$
\begin{equation*}
f(x)=x g\left(x^{d}\right), \tag{1.3}
\end{equation*}
$$

and vice versa.
In this paper, we develop a number of results concerning the permutation groups $K_{d, e}$ and $\bar{K}_{d, e}$. In view of the preceding paragraph, it follows that all the theorems established here will hold true if we replace $K_{d, e}$ and $\bar{K}_{d . e}$ by groups of

[^0]
[^0]: Received October 10, 1968. This research was supported in part by NSF Grant GP-6565. This paper is a chapter of the author's dissertation written under the direction of Professor Charles Wells at Case Western Reserve University.

