SPLIT DILATIONS OF FINITE CYCLIC GROUPS WITH APPLICATION TO FINITE FIELDS

By Shair Ahmad

1. Let C be a finite cyclic group of order |C| = de, written multiplicatively, where d and e are positive integers. We let ω_e be a fixed primitive e-th root of unity of C, and define $U_{d,e}^{(r)} = \{x \in C \mid x^d = \omega_e^r\}$ for each integer $r, 0 \leq r < e$. It follows that the sets $U_{d,e}^{(r)}$ are the cosets of the homomorphism from C to the additive group of crs (mod e) which carries α in $U_{d,e}^{(r)}$ into $r \pmod{e}$, where crs (mod e) denotes the complete set of least residues modulo e. We define $K_{d,e}$ to be the set of all mappings of the form

(1.1)
$$\varphi: x \to \alpha_r x \qquad (x \in U_{d,e}^{(r)}, r = 0, \cdots, e-1)$$

over C, where α_0 , α_1 , \cdots , α_{e-1} are any elements of $U_{d,e}^{(0)}$. It follows [4] that $K_{d,e}$ is an abelian group (on composition) of order d^* ; each mapping of the form (1.1) of C, where the coefficients α_r are any elements of C not necessarily belonging to $U_{d,e}^{(0)}$. It follows [4] that $\overline{K}_{d,e}$ is a permutation group of order $e!d^e$, containing $K_{d,e}$ as a normal subgroup. It is easy to verify that a mapping of the form (1.1) with arbitrary coefficients α_r need not be a permutation of C.

Let GF(q) be a finite field of order q. A polynomial in the ring GF[q, x] of polynomials in x over GF(q) is called a *permutation polynomial* if it permutes the elements of GF(q). A polynomial f(x) is said to *represent* a mapping φ of GF(q)if $f(x) = \varphi(x)$ for all $x \in GF(q)$. Let the cyclic group C be the multiplicative group of GF(q). Wells [4] has shown that every permutation of GF(q) that fixes 0 and whose restriction to C belongs to $K_{d,e}$, is represented by a permutation polynomial of the form

(1.2)
$$f(x) = x(g(x^d))^e$$
,

and vice versa. Similarly, any permutation of GF(q) that fixes 0 and whose restriction to C belongs to $K_{d,s}$, is represented by a permutation polynomial of the form

$$(1.3) f(x) = xg(x^d),$$

and vice versa.

In this paper, we develop a number of results concerning the permutation groups $K_{d,o}$ and $\vec{K}_{d,o}$. In view of the preceding paragraph, it follows that all the theorems established here will hold true if we replace $K_{d,o}$ and $\vec{K}_{d,o}$ by groups of

Received October 10, 1968. This research was supported in part by NSF Grant GP-6565. This paper is a chapter of the author's dissertation written under the direction of Professor Charles Wells at Case Western Reserve University.