ON THE w^* -SEQUENTIAL CLOSURE OF A BANACH SPACE IN ITS SECOND DUAL

By R. D. McWilliams

1. Let X be a real Banach space and J_X the canonical mapping from X into its second dual X^{**} . This paper is concerned with K(X), the w^* -sequential closure of J_XX in X^{**} . Conditions under which $K(X) = X^{**}$ are studied, and relationships involving K(X), K(Y), and K(X/Y) are obtained, where Y is a subspace of X.

Let S be the class of all norm-closed subspaces of the dual X^* of X. If $S \in S$ and $\{x_n\}_{n \in \omega}$ is a sequence in X, then $\{x_n\}$ will be said to be S-Cauchy if $\lim_n f(x_n)$ exists for each $f \in S$; thus a sequence is X^* -Cauchy if and only if it is w-Cauchy. Let \mathfrak{C} be the class of all $S \in S$ such that for every bounded S-Cauchy sequence $\{x_n\}$ in X there exists a sequence $\{y_n\}$ in the subspace S_0 of X annihilated by S, such that $\{x_n + y_n\}$ is w-Cauchy. Let \mathfrak{C} be the class of all $S \in S$ such that for every bounded S-Cauchy sequence $\{x_n\}$ in X there exist a sequence $\{w_n\}$ of averages far out in $\{x_n\}$ and a sequence $\{y_n\}$ in S_0 such that $\{w_n + y_n\}$ is w-Cauchy. Finally, let \mathfrak{C} be the class of all saturated $S \in S$.

In §2 it is shown that (i) $K(X) = X^{**}$ if and only if $\alpha \subseteq \mathbb{C}$, and (ii) the condition $\mathfrak{B} = \mathfrak{S}$ is necessary but not sufficient in order that $K(X) = X^{**}$. If Y is a closed subspace of X, let β be the natural mapping from X onto the quotient space Z = X/Y and let Y° be the annihilator of Y in X^{*} . In §3 it is shown that (iii) $\beta^{**}(K(X)) = K(Z)$ if and only if $Y^{\circ} \in \mathfrak{B}$; (iv) in particular, $Y^{\circ} \in \mathfrak{B}$ if Y^{*} is separable, and $Y^{\circ} \in \mathfrak{C}$ if there is a continuous projection from X onto Y; finally (v) if $Y^{\circ} \in \mathfrak{B}$, then $Y^{**}/K(Y)$ is isomorphic with $[Y^{\circ \circ} + K(X)]/K(X)$, and $Z^{**}/K(Z)$ is isomorphic with $X^{**}/[Y^{\circ \circ} + K(X)]$. These isomorphisms are analogous with isomorphisms obtained by Civin and Yood [2; 908]. Pertinent examples are given.

2. For every Banach space X it is obvious that $\alpha \subseteq \alpha$. It will be shown by examples that the inclusions $\alpha \subseteq \alpha$, $\alpha \subseteq \alpha$, and $\alpha \cap \alpha \subseteq \alpha$ can fail to be valid.

THEOREM 1. If X is a Banach space, then $K(X) = X^{**}$ if and only if $\mathfrak{C} \subseteq \mathfrak{C}$.

Proof. Let $K(X) = X^{**}$ and $S \in \mathbb{C}$. Then there exist an $f_0 \in (S_0)^0 \setminus S$ and, by the Hahn-Banach theorem, an $F \in X^{**}$ such that $F(f_0) \neq 0$, but F(g) = 0 for each $g \in S$. Since $K(X) = X^{**}$, there is a sequence $\{x_n\} \subset X$ such that $\lim_n f(x_n) = F(f)$ for each $f \in X^*$. Now $\{x_n\}$ is bounded [1; 123], and hence $\{(-1)^n x_n\}$ is bounded and has the property that $\lim_n g((-1)^n x_n) = 0$ for each

Received March 9, 1967. Supported by National Science Foundation Grant GP-5952.