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1. Introduction. In this paper we shall discuss the spectral properties of
multipliers on the Hilbert space Do

:Fix H a Hilbert space with latter product (). By D., for a fixed real num-
ber, we mean the Hilbert space of analytic vector valued functions, ](z)
o anz", such that an H for n 0, 1, 2, and
The inner product of D. is given by (f, g). (n -t- 1)" (an, b) for
](z) anz and g(z) bnz belonging to D. (the absence of indices on
the summation sign will henceforth imply the sum is to be taken from 0 to o ).
Note that each function of D is analytic in the open unit disc in the complex
plane, D. C D0 for a > and X: mapping D. into H defined by X:(f) ](z)
for each J D. and [z[ < 1 is a bounded linear transformation with norm I[X:l[

(n -t- 1)-" Izl 2. A vector-valued function, h(z), mapping the open unit disc
into 2o(H, H), the algebra of all bounded linear transformations mapping H
into itself, is a multiplier from D. to D0 if h. J Do for each J D. (where h.]
denotes pointwise operation of h on J for z in the open unit disc). The set
of all multipliers from D. to Do will be denoted by )(D., Do). In this paper
we will be primarly concerned with the ease a . A necessary condition
for such a function to belong to g2(D. D) is that it be a bounded analytic
vector-valued function m’apping the open unit disc into L(H, H). That is,
h g)(D D) implies sup,.,< Ilh(z)ll < and h(z) _, Anz" where
(H, H) for n 0, 1, 2, and 1[ IlL denotes the norm of (H, H). Further-
more, the transformation T, h !l)l(D., D.), mapping D. into itself by T(J)
,h. ] for each f D is a bounded linear transformation. (For the proof of these
statements and other results on multipliers of D. see [3]). Finally, by 2(D
we mean the algebra of all bounded linear transformations mappingD.) into itself.

2. We begin by giving a set which is always contained in the spectrum of a
multiplier. Then under some additional hypotheses, we shall show that this
,set is exactly the spectrum. The following two lemmas will be needed in this
development.

LEMMA 1.
respect to z).

J D. iJ and only iJ ]’ D._ (where ]’ denotes the derivative of J with

:LEMMA 2. h )(D. D.) implies h’ (D. D._).

THEOREM 1. IJ h (D. D.) and T, is invertible, then (h(z)) -, denoted
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