# SPECTRA OF MULTIPLIERS ON $D_{\alpha}$ 

By Gerald D. Taylor

1. Introduction. In this paper we shall discuss the spectral properties of multipliers on the Hilbert space $D_{\alpha}$.

Fix $H$ a Hilbert space with inner product $\left\rangle\right.$. By $D_{\alpha}$, for $\alpha$ a fixed real number, we mean the Hilbert space of analytic vector valued functions, $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$, such that $a_{n} \varepsilon H$ for $n=0,1,2, \cdots$ and $\sum_{n=0}^{\infty}(n+1)^{\alpha}\left\|a_{n}\right\|_{H}^{2}<\infty$. The inner product of $D_{\alpha}$ is given by $(f, g)_{\alpha}=\sum(n+1)^{\alpha}\left\langle a_{n}, b_{n}\right\rangle$ for $f(z)=\sum a_{n} z^{n}$ and $g(z)=\sum b_{n} z^{n}$ belonging to $D_{\alpha}$ (the absence of indices on the summation sign will henceforth imply the sum is to be taken from 0 to $\infty$ ). Note that each function of $D_{\alpha}$ is analytic in the open unit disc in the complex plane, $D_{\alpha} \subset D_{\beta}$ for $\alpha>\beta$ and $\lambda_{z}^{\alpha}$ mapping $D_{\alpha}$ into $H$ defined by $\lambda_{z}^{\alpha}(f)=f(z)$ for each $f \varepsilon D_{\alpha}$ and $|z|<1$ is a bounded linear transformation with norm $\left\|\lambda_{z}^{\alpha}\right\|^{2}=$ $\sum(n+1)^{-\alpha}|z|^{2 n}$. A vector-valued function, $h(z)$, mapping the open unit disc into $\mathcal{L}(H, H)$, the algebra of all bounded linear transformations mapping $H$ into itself, is a multiplier from $D_{\alpha}$ to $D_{\beta}$ if $h \cdot f \varepsilon D_{\beta}$ for each $f \varepsilon D_{\alpha}$ (where $h \cdot f$ denotes pointwise operation of $h$ on $f$ for $z$ in the open unit disc). The set of all multipliers from $D_{\alpha}$ to $D_{\beta}$ will be denoted by $\mathfrak{M}\left(D_{\alpha}, D_{\beta}\right)$. In this paper we will be primarly concerned with the case $\alpha=\beta$. A necessary condition for such a function to belong to $\mathfrak{M}\left(D_{\alpha}, D_{\alpha}\right)$ is that it be a bounded analytic vector-valued function mapping the open unit disc into $L(H, H)$. That is, $h \varepsilon \mathfrak{M}\left(D_{\alpha}, D_{\alpha}\right)$ implies $\sup _{1 z \mid<1}\|h(z)\|_{L}<\infty$ and $h(z)=\sum A_{n} z^{n}$ where $A_{n} \varepsilon$ $\mathfrak{L}(H, H)$ for $n=0,1,2, \cdots$, and $\left\|\|_{L}\right.$ denotes the norm of $\mathfrak{L}(H, H)$. Furthermore, the transformation $T_{h}, h \varepsilon \mathfrak{M}\left(D_{\alpha}, D_{\alpha}\right)$, mapping $D_{\alpha}$ into itself by $T_{h}(f)=$ $h \cdot f$ for each $f \varepsilon D_{\alpha}$ is a bounded linear transformation. (For the proof of these statements and other results on multipliers of $D_{\alpha}$ see [3]). Finally, by $£\left(D_{\alpha}, D_{\alpha}\right)$ we mean the algebra of all bounded linear transformations mapping $D_{\alpha}$ ) into itself.
2. We begin by giving a set which is always contained in the spectrum of a multiplier. Then under some additional hypotheses, we shall show that this set is exactly the spectrum. The following two lemmas will be needed in this development.

Lemma 1. $f \varepsilon D_{\alpha}$ if and only if $f^{\prime} \varepsilon D_{\alpha-2}$ (where $f^{\prime}$ denotes the derivative of $f$ with respect to $z$ ).

Lemma 2. $h \in \mathfrak{M}\left(D_{\alpha}, D_{\alpha}\right)$ implies $h^{\prime} \varepsilon \mathfrak{M}\left(D_{\alpha}, D_{\alpha-2}\right)$.
Theorem 1. If $h \varepsilon \mathfrak{M}\left(D_{\alpha}, D_{\alpha}\right)$ and $T_{h}$ is invertible, then $(h(z))^{-1}$, denoted
Received February 24, 1967. The contents of this paper represent part of the authors' dissertation at the University of Michigan, and the author would like to thank Professor Allen Shields for his guidance.

