INTERPOLATING FAMILIES AND GENERALIZED CONVEX FUNCTIONS

By Philip Hartman

1. Introduction. Beckenbach [1] gave the following definition: A family F of real-valued continuous functions $\{\phi(t)\}$ on an interval a < t < b is called a 2-parameter family if, for every pair of distinct numbers t_0 , $t_1 \in (a, b)$ and arbitrary real numbers y^0 and y^1 , there is a *unique* element $\phi(t) \in F$ satisfying $\phi(t_0) = y^0$ and $\phi(t_1) = y^1$.

The considerations of [4] indicate the desirability of an extension of this notion to functions of $x = (x^1, \dots, x^n)$ in a subset of \mathbb{R}^n . In this extension, we shall require the unique interpolation property at n + 1 points (x_0, \dots, x_n) which are not only distinct but are the vertices of a non-degenerate simplex $S(x_0, \dots, x_n)$. In other words, it will be required that if $x_i = (x_i^1, \dots, x_n^n)$, then

(1.1)
$$\det \begin{bmatrix} x_1^0 \cdots x_n^0 & 1 \\ x_1^1 \cdots x_1^n & 1 \\ \vdots \\ x_n^1 \cdots x_n^n & 1 \end{bmatrix} \neq 0.$$

DEFINITION. Let $\Omega \subset \mathbb{R}^n$ be a convex open set. A family F of real-valued continuous functions $\{\phi(x)\}$ on Ω will be called an (n, n + 1)-interpolating family if, for every set of n + 1 points x_0, \dots, x_n of Ω satisfying (1.1) and for every set of n + 1 real numbers y^0, \dots, y^n , there exists a unique element $\phi \in F$ satisfying $\phi(x_i) = y^i$ for $j = 0, \dots, n$.

The simplest example of an (n, n + 1)-interpolating family is the set of functions

(1.2)
$$\phi(x) = c_0 + c_1 x^1 + \cdots + c_n x^n,$$

with c_0, \dots, c_n arbitrary constants. If n = 1, then the notion of an (n, n + 1)-interpolating family reduces to that of a 2-parameter family. It will be shown that (n, n + 1)-interpolating families have properties analogous to those of 2-parameter families.

The following notation and terminology will be used: $S(x_1, \dots, x_m)$ is the convex closure of the set of points x_1, \dots, x_m ; $p(x_1, \dots, x_m)$ denotes the smallest flat containing x_1, \dots, x_m (so that, for example, $S(x_1, \dots, x_m) \subset p(x_1, \dots, x_m)$ and (1.1) means that dim $p(x_0, \dots, x_n) = n$; π will denote a hyperplane and π^{\pm} the open half-spaces bounded by π ; for brevity, π and π^{\pm} will also be used to denote the intersections $\pi \cap \Omega$ and $\pi^{\pm} \cap \Omega$ of Ω and the hyper-

Received September 29, 1966. This research was supported by the Air Force Office of Scientific Research.