INFINITE INTERVAL BOUNDARY VALUE PROBLEMS FOR

$$
y^{\prime \prime}=f(x, y)
$$

J. W. Bebernes and L. K. Jackson

1. Introduction. In this paper we shall be concerned with the existence and uniqueness of solutions of boundary value problems of the following three types:

$$
\begin{align*}
& \left\{\begin{array}{rl}
y^{\prime \prime} & =f(x, y) \\
y(0) & =-\alpha, \quad \alpha>0 \\
y^{\prime}(x) & \geq 0, \quad y(x) \leq 0 \quad \text { on } \quad[0,+\infty), \\
\begin{cases}y^{\prime \prime} & =f(x, y) \\
y(0) & =\alpha, \quad \alpha \text { real } \\
y(x) & \text { bounded on }[0,+\infty),\end{cases}
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right. \tag{I}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f(x, y) \tag{III}\\
y(x) \quad \text { bounded on } \quad(-\infty,+\infty)
\end{array}\right.
$$

Subsets of the following conditions on $f(x, y)$ will be imposed as needed:
(1) $f(x, y)$ is continuous on $S=\left\{(x, y) \mid x \varepsilon I_{1}, y \varepsilon I_{2}\right\}$, with I_{1} and I_{2} intervals associated with the boundary value problem being considered.
(2) $f(x, y)$ is nondecreasing in y for each fixed $x \in I_{1}$.
(3) $f(x, y)$ is strictly increasing in y for each fixed $x \varepsilon I_{1}$.
(4) $f(x, 0) \equiv 0$ on I_{1}.
(5) $|f(x, 0)| \leq M$ on I_{1}.
(6) $|f(x, y)-f(x, 0)| \geq \beta|y|, \beta>0$, for $(x, y) \varepsilon S$.
(7) there exists an $\eta, 0<\eta<1$, and a function $\delta(p)$ defined on $(\eta, 1)$ such that
(i) $(1-p)^{[1 /(1-p)]} \leq \delta(p) \leq 1$ for all $p \varepsilon(\eta, 1)$
(ii) $\eta<p<q<1$ implies $\delta(q)<\delta(p)$
(iii) $\lim _{p \rightarrow 1} \delta(p)=0$
(iv) $-|y|^{p} \leq f(x, y)$ for $x \geq 0,-\delta(p) \leq y \leq 0$.

We shall prove the following results concerning the boundary value problem (I):

Theorem 3.1. If $f(x, y)$ satisfies conditions (1), (2), and (4) on $S_{1}=\{(x, y)$: $x \geq 0, y \leq 0\}$, then (I) has a unique solution.

Received March 4, 1966.

