INFINITE INTERVAL BOUNDARY VALUE PROBLEMS FOR $y^{\prime\prime} = f(x,y)$

J. W. BEBERNES AND L. K. JACKSON

1. Introduction. In this paper we shall be concerned with the existence and uniqueness of solutions of boundary value problems of the following three types:

(I)
$$\begin{cases} y'' = f(x, y) \\ y(0) = -\alpha, \quad \alpha > 0 \\ y'(x) \ge 0, \quad y(x) \le 0 \text{ on } [0, +\infty), \\ \\ y(0) = \alpha, \quad \alpha \text{ real} \\ y(x) \text{ bounded on } [0, +\infty), \end{cases}$$

and

(III)
$$\begin{cases} y'' = f(x, y) \\ y(x) \text{ bounded on } (-\infty, +\infty). \end{cases}$$

Subsets of the following conditions on f(x, y) will be imposed as needed:

- (1) f(x, y) is continuous on $S = \{(x, y) \mid x \in I_1, y \in I_2\}$, with I_1 and I_2 intervals associated with the boundary value problem being considered.
- (2) f(x, y) is nondecreasing in y for each fixed $x \in I_1$.
- (3) f(x, y) is strictly increasing in y for each fixed $x \in I_1$.
- (4) $f(x, 0) \equiv 0$ on I_1 .
- (5) $|f(x, 0)| \leq M$ on I_1 .
- (6) $|f(x, y) f(x, 0)| \ge \beta |y|, \beta > 0$, for $(x, y) \in S$.
- (7) there exists an η , $0 < \eta < 1$, and a function $\delta(p)$ defined on $(\eta, 1)$ such that
 - (i) $(1-p)^{\lfloor 1/(1-p) \rfloor} \leq \delta(p) \leq 1$ for all $p \in (\eta, 1)$ (ii) $\eta implies <math>\delta(q) < \delta(p)$

 - (iii) $\lim_{p\to 1} \delta(p) = 0$
 - (iv) $-|y|^{p} \le f(x, y)$ for $x \ge 0, -\delta(p) \le y \le 0$.

We shall prove the following results concerning the boundary value problem(I):

THEOREM 3.1. If f(x, y) satisfies conditions (1), (2), and (4) on $S_1 = \{(x, y):$ $x \ge 0, y \le 0$, then (I) has a unique solution.

Received March 4, 1966.