THE DEFICIENCIES OF MEROMORPHIC FUNCTIONS
OF FINITE LOWER ORDER

By ALERT EDREI
Introduction. A few years ago, W. H. J. Fuchs and the present author

proved [1] the following

LemMa A. Let f(2) be a meromorphic function, let T(r) be its Nevanlinna
characteristic and let f(0) = 1.
Denote by
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the zeros of f(z) and by
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its poles (multiple values being repeated a suitable number of times).
Put

Vo= 0,7 = 2z [ log [foe) [ d0 (m 2 ),
where p(> 0) is so small that the disc |2| < p contains neither zeros nor poles of (2).
Then, if g 1s a non-negative integer and if
0<r=|z|<iR,
we have
@O  log | @) | = ®lve + vz + 72" + -+ + 2%}
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where
Ew,0) = (1 —u);Ewu,q = (1 —u) exp {u-+ 3u"+ - + (1/qu’} (¢ > 1)
and

q+1
| 8.2, B) | < 14{%} T(2R).
In a recent paper, Kjellberg [4] has obtained, independently, a special case
of Lemma A and has used the result to give an elegant proof of the following
theorem. (The special case is characterized by ¢ = 0 and f(2) entire.)
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