# GENERALIZED WEIGHTED $m$-th POWER PARTITIONS OVER A FINITE FIELD 

By John H. Hodges

1. Introduction, notation, and preliminaries. Let $G F(q)$ denote the finite field of $q=p^{n}$ elements. For $\alpha \varepsilon G F(q)$ let

$$
\begin{equation*}
e(\alpha)=e^{2 \pi i t(\alpha) / p}, \text { where } t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{n-1}} \tag{1.1}
\end{equation*}
$$

Then for positive integers $t, k, m$ and $\alpha, \alpha_{1}, \cdots, \alpha_{k}, \beta_{1}, \cdots, \beta_{k} \varepsilon G F(q)$ with $\alpha_{1} \cdots \alpha_{k} \neq 0$, define

$$
\begin{align*}
S_{m}(\alpha, t, k)=S_{m}\left(\alpha, t ; \alpha_{1}, \cdots, \alpha_{k}\right. & \left.; \beta_{1}, \cdots, \beta_{k}\right)  \tag{1.2}\\
& =\sum e\left(\beta_{1}\left|A_{1}\right|+\cdots+\beta_{k}\left|A_{k}\right|\right)
\end{align*}
$$

where the summation is over all sets $A_{1}, \cdots, A_{k}$ of $t \times t$ matrices over $G F(q)$ which satisfy the equation

$$
\begin{equation*}
\alpha_{1}\left|A_{1}\right|^{m}+\cdots+\alpha_{k}\left|A_{k}\right|^{m}=\alpha, \tag{1.3}
\end{equation*}
$$

where $|A|$ denotes the determinant of matrix $A$.
In this paper a number of results concerning the sum (1.2) are obtained. In $\S 2$ it is shown that $S_{m}(\alpha, t, k)$ can be expressed, by means of a reduction formula, in terms of certain $S_{m}(\alpha, 1, j)$ for $1 \leq j \leq k$. For $m=1$, this leads (Theorem 1) to an explicit formula for $S_{1}(\alpha, t, k)$. In $\S 3, S_{1}(\alpha, t, k)$ is also found by a direct calculation, thus giving a check on the general reduction formula. The special case $m=2 r, q$ even, is shown in $\S 4$ to reduce to the case $m=1$ considered for the $2 r$-th roots of $\alpha$ and the $\alpha_{i}$. For $m=2$ and $q$ odd, the general reduction formula yields a formula (Theorem 2) for $S_{2}(\alpha, t, k)$ in terms of certain Kloosterman sums, which for $t=1$ reduces to formulas given by Carlitz [2, §2]. In §6, a result of Carlitz and Uchiyama [5, §1] is used to obtain a bound (Theorem 3) on $S_{m}(\alpha, t, k)$ for $m$ of arbitrary size such that $p \nmid m$.

We remark that for $\beta_{i}=0$ all $i$, the sum (1.2) reduces to $N_{m}(\alpha, t, k)=$ $N_{m}\left(\alpha, t ; \alpha_{1}, \cdots, \alpha_{k}\right)$, the number of matrix solutions of equation (1.3). This special case of (1.2) will be considered for certain special values of $m$ in a separate paper to appear soon. By using the reduction formula (2.4) with $\beta_{i}=0$ all $i$ and results concerning (1.3) for the case $t=1$, which have been obtained in recent years by Carlitz, Corson, Faircloth, Hua, Vandiver, Weil and others (see [4] for a list of references), some results concerning (1.3) for arbitrary $t$ will be given in this separate paper.

Except as indicated, lower case Greek letters, $\alpha, \beta, \gamma, \cdots$ will denote numbers of $G F(q)$. The exponential function defined by (1.1) has the properties that $e(\alpha+\beta)=e(\alpha) e(\beta)$ and

Received June 29, 1961.

