A CONGRUENCE PROPERTY OF THE DIVISORS OF n FOR EVERY n

By C. L. VANDEN EYNDEN

If n is any positive integer, n has at least as many positive divisors congruent to 1 as congruent to 3 (mod 4). The purpose of this paper is to characterize those triples of integers a, b and k that can be substituted for 1, 3 and 4 in the preceding sentence. More precisely, denote by N(n, j, k) the number of positive divisors d of n such that $d \equiv j \pmod{k}$. From now on we assume k > 1, $a \neq b$, and, for definiteness, $1 \leq a$, $b \leq k$. Let S be the set of triples $\langle a, b, k \rangle$ such that $N(n, a, k) \geq N(n, b, k)$ for all positive integers n. All congruences will be modulo k unless otherwise specified.

LEMMA 1. Let $\langle a, b, k \rangle \in S$ and (a, b, k) = 1. Then (b, k) = a = 1.

Proof. First we show a=1. Taking n=b shows $a \mid b$. Since if n=k+b, then $(a+k) \nmid n$, we must have $a \mid (k+b)$ and so $a \mid k$. Thus $a \mid (a,b,k)$. Now let (b,k)=h and set n=b+kb/h. Since both $b,n\equiv b$, there must exist another divisor of n congruent to 1 besides 1 itself. Suppose t(rk+1)=n=b(k/h+1), $r,t\geq 1$. Clearly t< b unless h=1. But $t\equiv b$, therefore t=b. Thus h=(b,k)=1.

Lemma 2. Let $\langle a, b, k \rangle$ & S and (a, b, k) = 1. Then $c^2 \equiv 1 \pmod{k}$ whenever (c, k) = 1.

Proof. First we show $b^2\equiv 1$. Since a=(b,k)=1 by Lemma 1, we can use Dirichlet's theorem to pick distinct primes p_1 , $p_2\equiv b$. Let $n=p_1p_2$. The divisors of n are 1, p_1 , p_2 , p_1p_2 . Thus $N(n,b,k)\geq 2$ so we must have $p_1p_2\equiv 1$. Thus $b^2\equiv 1$.

Now let (c, k) = 1. We want to show $c^2 \equiv 1$ and so can assume $c \not\equiv 1$ and $c \not\equiv b$. Choose x such that $cx \equiv b$ and pick primes p_1 , $p_2 \equiv c$ and $p \equiv x$. Let $n = pp_1p_2$. Its divisors are 1, p, p_1 , p_2 , pp_1 , pp_2 , pp_1p_2 , pp_1p_2 . Since $pp_1 \equiv pp_2 \equiv b$, n must have at least one divisor $d \equiv 1$ besides 1 itself. If $p \equiv 1$ or $pp_1p_2 \equiv 1$, then $c \equiv b$, contrary to assumption. Also $p_1 \equiv p_2 \equiv c \not\equiv 1$. Only one divisor remains, p_1p_2 . Thus $p_1p_2 \equiv c^2 \equiv 1$.

Lemma 3. A natural number k has the property that $c^2 \equiv 1 \pmod{k}$ whenever (c, k) = 1 if and only if $k \mid 24$.

Proof. The proof that k has the required property whenever $k \mid 24$ is easy and will be omitted. To see the converse, suppose $k \nmid 24$. Then there exists a divisor m of k such that (m, k/m) = 1 and m is either a power of a prime $p \geq 5$,

Received May 22, 1961. The author is a National Science Foundation Fellow. He wishes to thank Professor Ivan Niven for suggesting both the problem and an improvement which shortened the proof.