CONTINUITY OF HOMOMORPHISMS

By R. M. Dudley

In this paper I will establish what seem to be fairly general hypotheses on topological groups G and H guaranteeing that every homomorphism of G into H be continuous. In nearly all cases the condition on H, which is given the discrete topology, is that one can define on it a "norm", by which I mean a nonnegative integer-valued function $p()$ on H with the following properties:

1) $p\left(h h^{\prime}\right) \leq p(h)+p\left(h^{\prime}\right)$ for all $h, h^{\prime} \varepsilon H$.
2) $p(1)=0$, where 1 is the unit element of H.
3) $p\left(h^{-1}\right)=p(h)$ for all $h \varepsilon H$.
4) $p\left(h^{n}\right) \geq \max (n, p(h))$ for any positive integer n and any $h \neq 1$.

A normed group will be a pair (G, p) where G is a non-trivial group and p is a norm on G. Here are two facts to help delineate the class of normed groups:

Lemma 1. A normed group has no element $h \neq 1$ which is of the form $h_{i}^{n_{i}}$ for arbitrarily large n_{i}, and (consequently) no element of finite order other than 1.

Proof. The assertion follows directly from 4). The converse is false, as will be seen later.

Lemma 2. The collection of normed groups contains the additive group Z of integers and is closed under the formation of (restricted) free products and direct sums (of any cardinality).

Proof. For Z it suffices to set $p(n)=|n|$. Let $\left\{\left(G_{\alpha}, p_{\alpha}\right)\right\}$ be any collection of normed groups. For an element $\left\{g_{\alpha}\right\}$ of the direct sum $\oplus_{\alpha} G_{\alpha}$, we set $p\left(\left\{g_{\alpha}\right\}\right)=\sum_{\alpha} p_{\alpha}\left(g_{\alpha}\right)$, where by assumption there are only finitely many terms in the sum; the verification of properties 1)-4) is straightforward. If g is an element of the free product of the G_{α} other than 1, it is uniquely of the form $g=g_{\alpha_{1}} \cdots g_{\alpha r}$ where $g_{\alpha_{i}} \varepsilon G_{\alpha_{i}}$ for each $i, \alpha_{i} \neq \alpha_{i+1}, r \geq 1$, and $g_{\alpha_{i}} \neq 1_{\alpha_{i}}$ for each i, where $1_{\alpha i}$ is the identity in $G_{\alpha_{i}}$. We set $p(g)=\sum_{i} p_{\alpha_{i}}\left(g_{\alpha_{i}}\right)$ and $p(1)=0$. All conditions in the definition of norm are clearly satisfied except, perhaps, for 4). To prove 4) for a fixed element g, we may assume that there are only finitely many G_{α}, and hence it suffices to consider a free product of two groups (G, p_{1}) and (H, p_{2}). If $\gamma=g_{1} h_{1} \cdots g_{r} h_{r}$ is an element of $G \circ H$ (where \circ denotes free product), we have $p(\gamma)=\sum_{i} p_{1}\left(g_{i}\right)+p_{2}\left(h_{i}\right)$; here no g_{i} or h_{i} except perhaps g_{1} or h_{r} is an identity. 4) clearly holds for γ unless g_{1} or h_{r} is an identity, say h_{r}. Take the smallest k such that $g_{k} \neq g_{r+1-k}^{-1}$ or $g_{k}=$ g_{r+1-k}^{-1} and $h_{k} \neq h_{r-k}^{-1}$, say the former; then

$$
\gamma=g_{1} h_{1} \cdots h_{k-1}\left(g_{k} \cdots g_{r+1-k}\right) h_{k-1}^{-1} \cdots g_{1}^{-1}
$$

Received March 15, 1961. This research was done while the author was a National Science Foundation Fellow.

