TRANSFORMATION OF AN ANALYTIC FUNCTION OF SEVERAL VARIABLES TO A CANONICAL FORM

By N. LEVINSON

1. Let F(z, w) be an analytic function of (z, w) for small |z| and |w| and suppose F is not identically zero. Then the Weierstrass preparation theorem states that, if F(0, 0) = 0, there are integers $k \ge 0$ and $m \ge 0$ such that

(1.1)
$$F(z, w) = z^k \Phi(z, w) [w^m + f_1(z) w^{m-1} + \cdots + f_n(z)]$$

where Φ is analytic for small |z| and |w| and $\Phi(0, 0) \neq 0$, and $f_i(z)$ are analytic for small z and $f_i(0) = 0$.

A related result, which was sketched in [1], will now be proved here.

THEOREM 1.1. Let F(z, w) be analytic for small |z| and |w|. Let F(z, w) - F(z, 0) not be identically zero. Then there exist integers $k \ge 0$ and $m \ge 1$ and an analytic function G(z, s) of (z, s) such that setting

$$(1.2) w = s + s^2 G(z, s)$$

in F(z, w) gives

(1.3)
$$F(z, w) - F(z, 0) = z^{k} \sum_{1}^{m} F_{i}(z)s^{i}$$

where $F_i(z)$ are analytic for small |z|,

$$F_j(0) = 0, \qquad 1 \le j < m$$

and $F_m(0) \neq 0$. If $F_0(z) = F(z, 0)$, then (1.3) takes the form

(1.4)
$$F(z, w) = z^{k} \sum_{1}^{m} F_{i}(z)s^{i} + F_{0}(z).$$

If z^k , $k \ge 0$, is the highest power of z which is a factor of F(z, w) - F(z, 0), then $f(z, w) = z^{-k}[F(z, w) - F(z, 0)]$

is analytic for small |z| and |w|, and there is a least integer $m \geq 1$ such that

$$\frac{\partial^m f}{\partial w^m}(0,0)\neq 0.$$

Hence Theorem 1.1 is a consequence of the following theorem.

THEOREM 1.2. Let f(z, w) be analytic in (z, w) for small |z| and |w|, let $m \ge 1$ and let

(1.5)
$$\frac{\partial^i f}{\partial w^i}(0,0) = 0, \qquad 0 \le j < m,$$

Received October 17, 1960. The preparation of this paper was supported by the Office of Naval Research.