NOTE ON A THEOREM BY A. BRAUER

By A. M. Ostrowski

In a paper published some years ago in this journal (see [1], p. 78, Lemma 3) A. Brauer uses and proves the following property of Cassini's curves:

If for real a, b, c, k we have $a<c<k$ and $b \leq c$, then the set of points in the z-plane with

$$
|z-b||z-c| \leq(k-b)(k-c)
$$

lies in the open domain

$$
|z-b||z-a|<(k-b)(k-a)
$$

with the exception of the point $z=k$, which is the only common point of the boundaries of both sets.

We give in this note a new proof of this theorem, which is somewhat simpler than that given by A. Brauer.

Without loss of generality we can assume that $b=0, k=1$ and therefore $0=b \leq c<k=1, a<c$.

We denote the curve in the z-plane with the equation

$$
\begin{equation*}
|z||z-a|=1-a \tag{1}
\end{equation*}
$$

by $G(a) . G(a)$ consists of one or two Jordan curves and $G(0)$ is the unit-circle (see [2], pp. 137-140).

We have to prove that for $0 \leq c<1$ the interior of $G(c)$ and $G(c)$ itself, save the point 1 , are completely contained in the interior of $G(a)$ for $a<c$. We distinguish two cases:

Case i. $0 \leq a<c<1$. We observe first that all points of $G(a)$ are contained in the interior of the unit-circle $G(0)$. Indeed, if we have in (1) $|z| \geq 1$, it follows that

$$
1-a \geq|z-a| \geq|z|-a \geq 1-a
$$

then we have the equality sign everywhere in this relation and this is only possible for $z=1$.

Suppose now that for $0<a_{0}<c_{0}<1, G\left(c_{0}\right)$ has a point z_{0} which does not lie in the interior of $G\left(a_{0}\right)$. If z_{0} does not lie on $G\left(a_{0}\right)$ itself, we let a_{0} decrease continuously to 0 . $G\left(a_{0}\right)$ tends then to the unit-circle which contains z_{0} inside. Since $G\left(a_{0}\right)$ also varies continuously, z_{0} lies for an intermediate value of a_{0} on $G\left(a_{0}\right)$. Put $z_{0}=r e^{i \varphi}$ for z into the equation (1). Then this equation is satisfied both for $a=a_{0}$ and $a=c_{0}$. But for $z=z_{0}$ equation (1) becomes:

$$
\begin{gathered}
r^{2}\left(r^{2}+a^{2}-2 a r \cos \varphi\right)=(1-a)^{2} \\
F(a) \equiv\left(1-r^{2}\right) a^{2}-2\left(1-r^{3} \cos \varphi\right) a-r^{4}+1=0
\end{gathered}
$$

