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1. Introduction. This investigation stems from the importance of certain
groups of linear fractional transformations in the study of Dirichlet series
satisfying a functional equation.
By F(k) we shall mean the group of linear fractional transformations of the

complex plane on itself,

(1.1) z’ V(z) (az -+- b)/(cz + d), ad bc 1,

with real coefficients, and generated by the transformations,

(1.2) S S(z) z -- , T T(z) -l/z, I=I(z) =z,

where is a fixed positive real number. These groups are useful in the study
of Dirichlet series only when g(h) is properly discontinuous, that is Fuchsian
group. It has been shown by E. Hecke [4], that F() is Fuchsian if and only if

2 cos -/q, q integer >_ 3, when , < 2; and for every real when > 2.
The symbols FI(k) and F2(},) shall denote a Fuchsian group when }, < 2 and
> 2 respectively. F(,) will now mean the totality of Fuchsian groups, namely

F(,) FI(,) + F2(,). The cases 1, the modular group, and , 2, a

subgroup of the modular will be omitted from our discussion.
It has been further established by Hecke [4], that a standard fundamental

region (FR) of the group is the domain in the upper half of the complex plane
defined by: /2 _< R(z) <_ ),/2, and z >- 1, with the real axis considered as
the principal circle. From the theory of automorphic functions (see for example,
[1] or [2]), we find that the groups F(h) have the following important property:
For FI(,), the set of limit points on the principal circle is a perfect everywhere
dense set of points. For F2(,), the set of limit points is a perfect nowhere dense
set. Moreover, from the nature of the FR the generators of the group defined
by (1.2) satisfy the relations,

(1.3)
T2= I, (TS) TSTS... TS (S-1T)-- I; (, < 2)

T2= I; (), > 2).
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