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1. Introduction.
transforms

The authors have previously studied the class of convolution

(1) f(x) G(x t)h(t) dt

for which the kernel G(t) has a representation of the form

1 f_: e’(2) G(t) , ds"

Here

(3) E(s) eb" - 1- s_.
k-z ak/

where b, {a,}7 are real constants subject to the sole restriction that

(4) K,
ak

See [2] and [3]. This theory includes as special cases the Laplace and Stieltjes
transforms. If we set E(s) cos vs then G(t) (sech 1/2t)/2r and the corre-
sponding convolution transform (1) becomes, after a change of variables, the
Stieltjes integral equation

(5) F(y) du.
/u+y

Similarly if E(s) r(1 s) then G(t) e-"e’ and after a change of variables
the corresponding convolution transform reduces to

F(y) e-(u) du,
/

which is Laplace’s integral equation.
In the previously mentioned papers the authors have determined the con-

vergence behavior of the transform (1). A kernel G(t) is said to belong to
class I if there are both positive and negative a’s; to class II if there are only
positive ads and if " 1/a and to class III if there are only positive
ads and if 1/a < . Either G(t) or G(-t) belongs to one of these three
classes. The authors proved, for example, that if G(t) class I and if the
transform (1) exists as a conditionally convergent integral for any single value

Received April 8, 1948.

659


