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Introduction. If either of two arbitrary functions, sayf f(n) and f’ f’(n),
of the positive integer n is given, the other function is uniquely determined by
the assignment

(1) f(n) f’(d),
din

since this linear transformation of f’ into f has the unique inversion

(2) f’(n) (n/d)f(d).
din

It is understood that the summation index d (or, equivalently, the quotient
n/d) runs through all divisors d(>_ 1) of n, and that (m) denotes MSbius’
function.
A formal principle, first applied by Gauss, can be formulated as follows (for

references to the classical literature see [3; 9-10]). The connection assigned by
(1) or (2) for arbitrary function mates f, f’ is such that

(3) M(f) f’(n)/n

holds if either the asymptotic average

(4) M(f) lim f(1) + f(2) + + f(n)

exists (as a finite limit) or the series f’(n)/n, where

(5) Y:
is convergent. In fact, if [x] denotes the greatest integer not exceeding x, it is
clear from (1) that

f(1) W f(2) + + f(n) [n/1]f’(1) - [n/2]f’(2) + + [n/n]f’(n).

Since [n/m] is 0 for every m > n, this is equivalent to

{f(1) + f(2) W -}- f(n)}/n [n/m]f’(m)/n.

Since the m-th term of the last series tends to f’ (m)/m if m is fixed and n --the relation (3) follows if the limit process n -- o is applied term-by-term.
However, the legitimacy of this formal passage to the limit is by no means

evident. In this regard, it is revealing to consider the particular function f(n)
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