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1. Simple prime factors. If f(n) is a function of the positive integer n, let fi
denote the set of the solutions n of f(n) t, and let f(x) be the number of those
elements of f which are less than x.

Thus, if f(n) is the number of distinct primes dividing n or is 0 according as n
is or is not square-free, then n is in f0 if and only if it is not square-free so that
fo(x) (1 (2)-1)x as x -- . On the other hand, if m > 0, then f,(x) is
the number of those integers n less than x which are composed of exactly m
distinct prime factors, a number usually denoted by m(x). Apparently, it was
observed already by Gauss that the prime number theorem, i.e., rl(x)
x(log x)-1, implies, for every fixed m (= 1, 2, ), the asymptotic relation

(1) r,(x) L,(x),

where

L,(x) x(log x)-(log log x)m-1

(m 1)!

Thus L(x) - L(x) - =- x, although

(x) + (x) +... Ix]- f0(x) x/(2).

The latter anomaly presents itself also in case of the function f(n) O(n)
which plays a central rSle in the following considerations and represents the
number of simple prime factors of n (for instance, 0(15) 2, t(60) 2,
0(24) 1). Clearly, there exists for every n exactly one m for which the set
0 contains n so that O(x) - O(x) - =- Ix] x. However, for every
fixed m,

(2)

where

O,(x) const. L,(x),

const. (2)(3)
(6)

In fact, if m is fixed, an n is in 0 if and only if n p p,j holds for m
distinct primes p, p and for a j having only multiple prime factors each
of which is distinct from pl, ..., p. Since m(x) is the number of those
integers less than x which are of the form pl p, it follows that, in order to
pass from (1) to (2), it is sufficient to show that 1/i has a finite
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