THEOREMS ON FOURIER SERIES AND POWER SERIES
By H. R. PirT

1. Introduction
1.1. Notation. If p > 0, we write
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If g(2) is a regular analytic function for | z | < 1, we write
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(The limit exists, since the expression in the bracket increases with r.)

1.2. Suppose that F(8) is periodic and integrable and that g(z) is regular in
|z| < 1. Let

(1.2.1) F@) ~ 2 a.e™ (a0 = 0),
(1.2.2) g(z) = ; Cn?" (2| <1).
We shall prove that if p, g, « satisfy certain conditions,
(1.2.3) Slean™] = KD,l9() (1 — 2)7],
(1.2.4) S,la.n™ = KM,[F(6)6%),
where
(1.2.5) a=tyli o,
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and the constants K(p, ¢, «) are independent of g(z) and F(6).
Special cases of these inequalities, due to Hausdorff' and Hardy and Little-
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1 Hausdorff [5], Theorem II. (Numbers in brackets refer to the references at the end
of the paper.) This is the case @ = v = 0 of (1.2.4).
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