THE INVERSION PROBLEM OF MÖBIUS

By Einar Hille

1. Introduction. The present paper represents an attempt to give a rigorous treatment of certain inversion problems which have their origin in a little-known paper by A. F. Möbius. ${ }^{1}$

As a typical, though not the oldest, example of these inversion problems we might take the linear functional equation with constant coefficients

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} f(n z)=g(z) \tag{1.1}
\end{equation*}
$$

a formal solution of which has the form

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} g(n z)=f(z) \tag{1.2}
\end{equation*}
$$

These problems all lead to the same infinite system of bilinear equations

$$
\begin{equation*}
a_{1} b_{1}=1, \quad \sum_{d \mid n} a_{d} b_{n / d}=0, \quad n>1 \tag{1.3}
\end{equation*}
$$

for which the algorithm of Möbius seems a fitting name.
This algorithm is perhaps best known from the problem of finding the reciprocal of an ordinary Dirichlet series, i.e., a solution of the problem

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} n^{-s} \sum_{n=1}^{\infty} b_{n} n^{-s}=1 \tag{1.4}
\end{equation*}
$$

We shall see that the properties of these series are fundamental in all these inversion problems.

This observation suggests that there is a class of inversion problems associated with the problem of expressing the reciprocal of a general Dirichlet series or, still more generally, of a Laplace-Stieltjes integral as a function of the same class. In general the reciprocal is not so expressible, but whenever it is, certain functional equations of the type

$$
\begin{equation*}
\int_{1}^{\infty} f(u z) d A(u)=g(z) \tag{1.5}
\end{equation*}
$$

have solutions of the form

$$
\begin{equation*}
\int_{1}^{\infty} g(u z) d B(u)=f(z) \tag{1.6}
\end{equation*}
$$

Received April 24, 1937; presented to the American Mathematical Society, March 26, 1937.
${ }^{1}$ Ueber eine besondere Art von Umkehrung der Reihen, Journal f. Math., vol. 9 (1832), pp. 105-123; Gesammelte Werke, vol. IV, 1887, pp. 589-612.

