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1. Introduction. A well known theorem in differential geometry concerns the
normal curvatures of curves through a point on a 2-dimensional surface in
3-space. It states that either the curvature is constant, independent of the
direction of the curve, or else there is one direction giving a maximum to the
curvature, and another (perpendicular) direction giving a minimum. We gen-
eralize this result to the case of an n-surface in a Riemannian (n 1)-space.
In place of merely a maximum and a minimum, there is in general a non-
degenerate critical point of each type or index 0, 1, n 1. A similar
result is obtained for an arbitrary subspace of a Riemannian space, the theorem
being stated in terms of projections on any direction orthogonM to the sub-
space. A final theorem, with a similar statement regarding critical values, con-
cerns the Ricci mean curvature in a Riemannian space.

2. The principal directions for a real quadratic form.
critical values will be based on the following theorem.
THEOREM 2.1.

on the locus

Given the real quadratic form
Z aiixix]
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Our results regarding

z has at most, and in general exactly, n distinct critical values. When the number
is n, the critical values are taken on at n pairs of diametrically opposite points of
(2.2), determining n mutually perpendicular lines through the origin in the number
space of the x’s. If the pairs are ordered according to the algebraic values of z,
at either point of the i-th pair z has a non-degenerate critical point of index i 1.

Proof. We begin by making an orthogonal transformation with fixed origin
in (x)-space so that the given form becomes (using the same letters xl, x)
(2.3) z-- blX --- "- b,x bx
with the b’s real. Now if we consider the functio
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