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1. In the plane of the complex variable z = z + 4y, the polynomials

1, 2, 2, - - - are mutually orthogonal, not merely on the circumference |z | = 1,
but also on every circumference |z | = R, in the sense that
kol
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The general problem of the existence of sets of polynomials in z which are
simultaneously orthogonal, with respect to suitable norm functions, on each
of several curves in the z-plane has been studied only recently. Let us say that
the set pi(2) of polynomials in z is canonical on a rectifiable Jordan curve C
with respect to the norm function n(z) provided the set pi(2) is found by or-
thogonalization on C of the set 1, z, 2%, - - - with respect to the positive continuous
norm funection n(z), and provided the coefficient of z*in pi(2) is chosen positive.
Walsh established' the orthogonality with respect to a suitable norm function
of certain Tchebycheff polynomials on all ellipses of a given confocal family.
Szegd®’ and Walsh® showed independently and by widely different methods the
fact that if the same set of polynomials px(z) is canonical on two distinet curves
C and €', then either C’ is a curve Cy or C is a curve Cx;' Szegd requires ana-
lyticity of C and C’. [Let C be an arbitrary Jordan curve in the z-plane, and
let the function z = y¥(w) map the exterior of C onto the exterior of the unit
circle | w | = 1 in the w-plane so that the points at infinity in the two planes
correspond to each other. We denote generically by Ck the image (Kreisbild)
in the z-plane of the circle |w| = R > 1 under this transformation.] More-
over, Szegd® exhibited all sets of polynomials in 2, each set canonical simulta-
neously on all Cr of a given family, 1 < R < «.° The general problem of the
existence of sets of polynomials canonical simultaneously on only two curves
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¢ These sets are enumerated in §2, below.
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