ERGODIC MEASURES, ALMOST PERIODIC POINTS AND DISCRETE ORBITS

BY

MICHEL TALAGRAND

Let K be a compact space, and ρ be a homeomorphism of K. A set $L \subset K$ is said to be *invariant* if $\rho L \subset L$, and is said to be *minimal* if it is closed, invariant and minimal with respect to these two properties.

A point $\omega \in K$ is said to be *almost periodic* if for each neighborhood V of ω , the set $\{i \in \mathbb{N}; \rho^i \omega \in V\}$ is relatively dense in N. Denote by A^{ρ} the set of all almost periodic points. It is known that $\omega \in A$ if and only if the closure of $\{\rho^i(\omega); i \geq 0\}$ is minimal.

A point $\omega \in K$ will be said to be *recurrent* if it is not almost periodic and if each neighborhood V of ω , the set $\{i \in \mathbb{N}; \rho^i(\omega) \in V\}$ is infinite. Denote by R^{ρ} the set of recurrent points, and denote by D^{ρ} the complement of $R^{\rho} \cup A^{\rho}$, that is the set of points whose orbit is discrete. The sets A^{ρ} , R^{ρ} , D^{ρ} are invariant.

Denote by M^{ρ} the set of all ρ -invariant Radon probabilities on K. It is a convex w*-compact set, and an invariant probability μ on K is said to be *extremal* if it is extremal in M^{ρ} . For $\mu \in M^{\rho}$ and X any subset of K, we denote by $\mu^{*}(X)$ and $\mu_{*}(X)$ the outer and inner measure of X. If μ is extremal and X invariant, then for all X we have $\mu^{*}(X)$, $\mu_{*}(X) \in \{0, 1\}$.

Let us denote by τ the map $n \to n + 1$ from N to N, and again by τ the restriction to $\beta N \setminus N$ of its canonical extension to the Stone-Čech compactification βN of N.

In [1], very interesting results concerning A^r , R^r , D^r are proved. Our aim is to investigate, from a slightly different point of view, for an extremal $\mu \in M^{\rho}$, what can be the inner and outer measure of A^{ρ} , R^{ρ} , D^{ρ} . If the support supp μ is minimal, it is contained in A^{ρ} . So we have to investigate only what happens if this support is not minimal. Let

 $E^{\rho} = \{\mu \in M^{\rho} : \mu \text{ is extremal, supp } \mu \text{ is not minimal}\}.$

The following result shows that if $\mu \in E^{\rho}$, then A^{ρ} is small for μ .

THEOREM 1. Let $\mu \in E^{\rho}$. Then $\mu^*(A^{\rho}) = 0$.

Proof. Let F be the support of μ . If F is not minimal, F contains an invariant closed G such that $G \neq F$. Let U be an open set of K such that $U \cap F \neq \phi$, $\overline{U} \cap G = \phi$. For all n let $V_n = \bigcup_{i \le n} \rho^i(U)$. Since $V_n \cap G = \phi$, V_n

Received October 15, 1979.

^{© 1981} by the Board of Trustees of the University of Illinois Manufactured in the United States of America