ON THE EXISTENCE OF CLOSED GEODESICS ON NONCOMPACT RIEMANNIAN MANIFOLDS

VIERI BENCI AND FABIO GIANNONI

1. Introduction. The problem of the existence of a closed geodesic on compact Riemannian manifolds \mathcal{M} has been faced by several authors (see e.g. [7, 9]).

The only result that we know about the noncompact case is a theorem of Thorbergsson (see [18]) where the existence of a closed geodesic is proved when \mathcal{M} is not contractible and its sectional curvature is nonnegative outside some compact set. In that paper the author proves the existence of a compact convex subset of \mathcal{M} and studies the existence problem in such a compact subset of \mathcal{M} . This is possible if the sectional curvature at infinity is nonnegative.

In this paper, we prove the existence of at least one closed geodesic on the noncompact Riemannian manifold \mathcal{M} —under different assumptions on its topology and its sectional curvature—directly working on the entire manifold \mathcal{M} . In particular, we suppose that the *lim sup* of the curvature at infinity is nonpositive.

Let \mathcal{M} be a Riemannian manifold. We shall denote by $\Lambda(\mathcal{M})$ the free loop space on \mathcal{M} (with the compact-open topology) and by K(x) ($x \in \mathcal{M}$) the supremum of the sectional curvatures, i.e.,

$$K(x) = \sup\{K_{\pi} : \pi \subset T_{x}\mathcal{M}\}$$
(1.1)

where $T_x \mathcal{M}$ is the tangent space of \mathcal{M} at x and K_{π} is the sectional curvature with respect to the plane $\pi \subset T_x \mathcal{M}$.

Moreover, we denote by $d(\cdot, \cdot)$ the distance induced by the Riemannian structure of \mathcal{M} .

We can now state the main result of the paper.

THEOREM 1.1. Let $(\mathcal{M}, \langle , \rangle)$ be a complete, connected, noncompact C^{∞} -Riemannian manifold. Assume that

(i) there exists an integer $q > 2 \cdot \dim \mathcal{M}$ such that

$$H_a(\Lambda(\mathcal{M}), \mathbb{K}) \neq 0,$$

where $H_a(\cdot, \mathbb{K})$ is the qth singular homology group with coefficients in a field \mathbb{K} ;

Received 27 April 1992.

This work supported by the Ministry of University and Scientific and Technological Research (60%, 1991).