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5. Study Influence of Individual Observations on Fit.
We customarily plot DFITS; (WK,) against .

6. Study Influence of Individual Observations on
Estimates of Coefficients. For each j we plot
DBETAS,;(D}) against i, and we look at these plots
in parallel.

7. Study Influence of Individual Observations on the
Estimated Covariance Matrix of (3. Here we plot
COVRATIO; (CVR,) against i. In Steps 5 and 7 we
also examine the residual versus leverage plots with
iso-influence contours.

8. Probe for Subsets of Observations That Are
Jointly Influential. Although more research is needed
in this area, we feel it forms an important part of the
diagnostic strategy. The k-clustering approach of
Gray and Ling (1984) and the derivative influence
techniques of Kempthorne (1986) seem promising.
Another, more ad hoc, approach is to drop the obser-
vations (say, three or four) that have the most indi-
vidual influence and then see how much the results
change.

For a diagnostic analysis, this strategy constitutes
a bare minimum. Often, other areas of diagnosis are
critical to the analysis: need for transformation, influ-
ence on model choice, or detecting departures from
. the standard Gauss-Markoff assumptions such as het-
eroscedastic or correlated errors. Research in these
areas among others has been especially active in recent
years, including applications of a Bayesian perspec-
tive. See, e.g., Atkinson (1982), Cook and Weisberg
(1983), Dawson (1985), Johnson and Geisser (1983),
and Pettit and Smith (1985).
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Comment

Paul F. Velleman

I congratulate Chatterjee and Hadi on an excellent
survey of an area that has developed rapidly in the
past decade. One of the disappointments of this area
is that these very valuable techniques have been slow
to infiltrate the literature of disciplines using regres-
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sion techniques. We need to turn some of our attention
to promoting the use of diagnostic statistics in ordi-
nary practical analyses.

One problem with regression diagnostics has been
that terminology has not yet standardized. Unfortu-
nately, Chatterjee and Hadi exacerbate rather than
alleviate this problem. I do not believe that we need
yet another name and notation for the Hat matrix,
nor that we benefit from new and somewhat cryptic
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