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Hannan has written. With his retirement, I expect to
see papers being generated even more rapidly.
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Comment

R. Dahlhaus

This paper by Hannan is an excellent review of an
important topic in time series analysis: the approxi-
mation of a nonparametric time series by a parametric
rational one. The paper gives insight into the problems
which arise and offers a variety of methods to tackle
these problems.

To regard a fitted parametric model as an approxi-
mation to a nonparametric time series is clearly the
correct point of view when dealing with parametric
time series analysis. Many interesting papers dealing
with related problems have been published in recent
years and there is great need for further results to
develop the theory sufficiently. The present paper is
an important contribution to this goal.

It was therefore a pleasure for me to read this
stimulating paper and to have been asked to comment
on it. I will restrict my comments to the problem of
estimation and in particular to the case of a one-
dimensional process which is approximated by an
autoregressive process.

i. THE APPROXIMATION CRITERION

Since the goal of the paper is the approximation of
the transfer function, it seems to be natural to take a
criterion which measures the quality of the approxi-
mation directly. Suppose the original series has an
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infinite autoregressive representation
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and Y, is approximated by an AR(k)-process whose
coefficients are estimated from the data by a(k), - - -,
dr(k), 6. An appropriate approximation criterion then
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-would be, for example,
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Considering the relative difference between A\
and A()\) is natural, since for Yule-Walker estimates
(1) is approximately equal to o 2T(d(k) — a(k))
R(a(k) — a(k)) with R = {cov(Y;, Y;)};;, which tends
weakly to a x} distribution (if the true process Y, is
also an AR(k)-process), while the limit behavior of
the absolute difference would depend on A(M\). The
choicée of the .#, norm seems to be mainly for
calculational convenience. However, by using the
approximation log(¢/d:) = (¢/ax) — 1 (or by adding
the penalty term 2[(¢/d,) — 1 — log(a/a)] for the
innovation variance estimate to the criterion (1)) one
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