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Comment

Joe R. Hill

Professor del Pino elegantly documents the many
statistical applications of iterative generalized least
squares. I thank him for his insightful comments on
the relationships between the various algorithms.

My comments concern three issues: (1) estimation
of dispersion parameters in mixture models; (2) con-
ditional inference and model checking for normal
nonlinear regression; and (3) quasilikelihood versus
transformation.

1. DISPERSION PARAMETERS IN MIXTURE
MODELS

To be specific, let’s assume that:

(1) Given ¢ = (61, ---, 6,) and known ¢, ---, t,
Y1, * + +, Y are independent with

yi| 8 ~™4 NEF[4;, 6,/t;]

where NEF[m, V(m)] stands for a natural exponential
family with mean m and variance function V (Morris,
1982, 1983), hence

Yi | 0; ~ind Poisson(ﬂiti)/ti.
(2) The 6; are independent with
0; ~™ CF[u; = exp{x! B}, du:]

where CF[m, V(m)] is the conjugate family with mean
m and variance function V, the x/ are known 1 X p
vectors of covariate values, 8 is an unknown r X 1
vector of regression coefficients, and ¢ is a dispersion
parameter.

Marginally, the y; are independent with
yi ~" MF[;, (1 + ¢t;)ui/t:],

where MF stands for the marginal family. If ¢ is
known, then the quasilikelihood estimator of g is
statistically very efficient and computationally sim-
pler compared to the MLE based on the negative
binomial likelihood (Hill and Tsai, 1988).

If ¢ is unknown, extended quasilikelihood (Nelder
and Pregibon, 1987) provides a method for estimating
both 8 and ¢. What is the author’s opinion of this
estimation procedure? Can he suggest a better one?

Also, if 8 is known, the extended quasilikelihood for
¢ is the likelihood for a curved exponential family (it
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treats the component deviances as though they had
gamma distributions). This suggests that inferences
about ¢ should be conditional on the ancillary infor-
mation in the data. Though this is a bit far afield from
the original topic of the article, would the author
comment as to how this can be done? This prob-
lem also arises in unequal variance normal empirical
Bayesian models. In that case, the extended quasi-
likelihood is the same as the likelihood, and the model
is a curved exponential family.

2. NORMAL NONLINEAR REGRESSION

The procedures reviewed by the author pertain to
the estimation of the regression parameters. Could he
comment on conditional inference based on the re-
sulting estimators? Cox (1980) suggested that the size
of intrinsic curvature determines the importance of
conditional inference. In unpublished work with Tsai,
we found evidence to support this.

Also, what sort of model checking can be done based
on the ancillary statistics? Hinkley (1980) gave a
persuasive argument for conditional inference to ac-
count for model checking involving ancillaries.

3. QUASILIKELIHOOD VERSUS
TRANSFORMATION

Finally, a brief comment on the last paragraph in
Section 7. Hill and Tsai (1988) and Firth (1988)
demonstrated a robustness property of quasilikelihood
estimates compared to estimates based on transfor-
mations of the data to normality.

Again, I applaud the author for a very stimulating

.article.
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