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The remarks that follow are mainly critical, but that is not unusual when
statisticians discuss difficult new areas of research. My criticism is not meant to
obscure the paper’s many positive achievements: the neat development of
resampling methods for the linear regression problem, in particular Theorem 2;
the extended class of weighted jackknives introduced in Section 4, and their
justification in Theorem 3; and the intriguing suggestion in Section 8 for a more
general weighted jackknife based on the Fisher information. The paper’s main
fault, in my opinion, is not the absence of interesting new ideas but rather an
overinterpretation of results, which leads to bold distinctions not based on
genuine differences.

(A) 1 reran part of the simulation experiment of Section 10, exactly as
described except for the following change: Instead of taking the e; ~ N(0, x,/2),
I took them N(0,|x; — 5.5|). This gives nearly the same set of variances for the
errors e;, but with the large variances occurring at both ends of the x range,
rather than just at the right end. Only the estimation of Var(S,) (actually equal
3.64 in this situation) was considered, and only by the two estimators v,
definition (5.1), and 9, definition (2.9).

Here are summary statistics for 400 Monte Carlo trials:

mean st. dev. rms
) 3.47 3.14 3.14
) 2.40 1.20 1.73

(rms indicates root mean square error). Now 9, the ordinary estimator (and also
the “residual bootstrap” estimator v, (2.9)), is biased sharply downward instead
of upward as in Table 1; v, is nearly unbiased, as it was designed to be.

However v,,, is much more variable than ¢, having nearly three times the
standard deviation and twice the rms error for estimating Var(S,). The per-
centiles of the two Monte Carlo distributions

5% 10% 16% 50% (true) 84% 90% 95%
V0 0.57 0.83 1.02 247 (3.64) 6.15 7.80 9.63
0 0.88 1.12 1.27 2.14 (3.64) 3.65 4.06 4.56
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