REFERENCES

- J. Neyman, "Smooth Test" for goodness of fit," Skandinavisk Aktuariedskrift, (1937), pp. 149-199.
- [2] G. A. Baker, "The probability that the mean of a second sample will differ from the mean of a first sample by less than a certain multiple of the standard deviation of the first sample," Annals of Math. Stat., Vol. 6 (1935), pp. 197-201.
- [3] G. A. Baker, "Transformations of bimodal distributions," Annals of Math. Stat., Vol. 1 (1930), pp. 334-344.
- [4] G. A. Baker, "The relation between the means and variances, means squared and variance in samples from the combinations of normal populations," *Annals of Math. Stat.*, Vol. 2 (1931), pp. 333-354.
- [5] G. A. Baker, "The significance of the product-moment coefficient of correlation with special reference to the character of the marginal distributions," Jour. Am. Stat. Assoc., Vol. 25 (1930), pp. 387-396.

A NOTE ON THE POWER OF THE SIGN TEST

By W. MAC STEWART University of Wisconsin

- 1. Introduction. Let us consider a set of N non-zero differences, of which x are positive and N-x are negative; and suppose that the hypothesis tested, H_0 , implies, in independent sampling, that x will be distributed about an expected value of N/2 in accordance with the binomial $(\frac{1}{2} + \frac{1}{2})^N$. As a quick test of H_0 , we may choose to test the hypothesis h_0 that x has the above probability distribution. Defining r to be the smaller of x and N-x, the test consists in rejecting h_0 and therefore H_0 whenever $r \leq r(\epsilon, N)$, where $r(\epsilon, N)$ is determined by N and the significance level ϵ .
- 2. Power of a test. In applying such a test it is of interest to know how frequently it will lead to a rejection of H_0 when H_0 is false and the situation H implies that the probability law of x is $(q+p)^N$, with $p \neq \frac{1}{2}$, thereby indicating an expectation of an unequal number of + and differences. The probability of rejecting H_0 when H_1 implying $p=p_1$ is true, is termed the *power* of the test of H_0 relative to the alternative H_1 . Thus, from the point of view of experimental design the power (P) of the test of H_0 may be considered a function of the alternative hypothesis H_1 , the significance level ϵ , and N. As such, the following observations may be noted:
- 1. The power P_2 , for an assumed ϵ , N, and H_2 implying $p=p_2$ is greater than or equal to the power P_1 for ϵ , N and H_1 implying $p=p_1$ where $\mid p_2-.50\mid >\mid p_1-.50\mid$.

¹ For an extensive discussion of the power of a test, the reader is referred to J. Neyman and E. S. Pearson, *Statistical Research Memoirs*, Vol. 1 (1936), pp. 3-6.