NOTES

This section is devoted to brief research and expository articles, notes on methodology and other short items.

NOTE ON RUNS OF CONSECUTIVE ELEMENTS

By J. Wolfowitz

Columbia University

In my paper [1] I did not derive the asymptotic distribution of W(R), an omission which I wish to correct in this note.

Let the stochastic variable $R = (x_1, \dots, x_n)$ be a permutation of the first n positive integers, where each permutation has the same probability $\frac{1}{n!}$. A subsequence $x_{i+1}, x_{i+2}, \dots, x_{i+l}$, is called a run of consecutive elements of length l if:

a) when l' is any integer such that $1 \le l' < l$,

$$|x_{i+l'} - x_{i+l'+1}| = 1$$

- b) when i > 0, $|x_i x_{i+1}| > 1$
- c) when $i + l < n, |x_{i+l} x_{i+l+1}| > 1$.

Let W(R) be the total number of runs in R. Then n - W(R) is a stochastic variable which, it will be shown, has in the limit the Poisson distribution with mean value 2. More precisely, if p(w) is the probability that n - W(R) = w, then

(1)
$$\lim_{n\to\infty} p(w) = \frac{2^w}{e^2 \cdot w!}.$$

PROOF: Define stochastic variables $y_i (i = 1, 2, \dots, n)$, as follows: $y_i = 1$ if x_i is the first element of a run of length 2, $y_i = 0$ otherwise. It is easy to see that the probability that $x_i (i = 1, 2, \dots, n)$ be the initial element of a run of length greater than two is $O\left(\frac{1}{n^2}\right)$ and hence that the probability of the occurrence of a run of length greater than two is $O\left(\frac{1}{n}\right)$. Hence the limiting distribution of

of a run of length greater than two is $O\left(\frac{1}{n}\right)$. Hence the limiting distribution of n - W(R) is the same as that of

$$y = \sum_{i=1}^{n} y_i,$$

provided either exists.

The y_i are dependent stochastic variables and almost all (i.e., all with the exception of a fixed number) have the same marginal distribution. We now wish to consider the expression

$$E(y_{i_1}^{a_1}y_{i_2}^{a_2}\cdots y_{i_k}^{a_k})$$

(where the symbol E denotes the expectation) for any set of fixed positive integers k, α_1 , \cdots , α_k , and for all k-tuples i_1 , i_2 , \cdots , i_k , with no two elements