ON THE APPROXIMATE DISTRIBUTION OF RATIOS

By P. L. Hsu

National University of Peking

The purpose of this paper is to apply Cramer's theorem of asymptotic expansion and Berry's theorem to study the approximate distribution of ratios of the following two types:

(I)
$$Z = \frac{1}{n} (Y_1 + \cdots + Y_n) / \frac{1}{m} (\bar{X}_1 + \cdots + \bar{X}_m) = \bar{Y}/\bar{X},$$

(II)
$$Z = Y / \frac{1}{m} (X_1 + \cdots + X_m) = Y/\bar{X}.$$

In (I) the X_i , Y_j are independent, the Y_j are equi-distributed,³ and the X_i are equi-distributed and positive. In (II) X_1, \dots, X_n , Y are independent and positive, and the X_i are equi-distributed.

1. The ratio (I). Assume that (I1) the absolute kth moment of X_i and that of Y_j are finite and positive, where k is a fixed integer ≥ 3 , (I2) the distribution of X_i and that of Y_j are non-singular.

Let

$$\xi = \epsilon(X_i), \qquad \eta = \epsilon(Y_j), \qquad \sigma^2 = \epsilon(X_i^2) - \xi^2, \qquad \tau^2 = \epsilon(Y_j^2) - \eta^2$$

and

$$U = \frac{\sqrt{m}}{\sigma} (\bar{X} - \xi), \qquad V = \frac{\sqrt{n}}{\tau} (\bar{Y} - \eta).$$

Let F(x), G(x) and H(x) be respectively the distribution functions of \mathbb{Z} , U and V. Let

$$b = \left(\frac{\sigma^2 x^2}{m} + \frac{\tau^2}{n}\right)^{\frac{1}{2}}, \qquad u = \frac{\xi n - \eta}{b}.$$

Then the relation $Z \leq x$ is equivalent to

$$-\frac{x\sigma U}{b\sqrt{m}} + \frac{\tau V}{b\sqrt{n}} \le u.$$

¹ H. Cramér. Random Variables and Probability Distributions (1937), Chap. 7.

² A. C. Berry. "The accuracy of the Gaussian approximation to the sum of independent variates", Trans. Amer. Math. Soc., Vol. 49 (1941), pp. 122-136.

³ The Y_i are said to be equi-distributed if all Y_i have the same distribution function. 204