GENERALIZATION OF THE THEOREM OF GLIVENKO-CANTELLI

By J. Wolfowitz

Cornell University and University of California at Los Angeles

Let X_1 , X_2 , \cdots be independent chance variables with the same distribution function F(x). (F(x) is the probability that $X_1 < x$.) The "empiric" distribution function $F_n^*(x)$ of X_1, \dots, X_n is given by

(1)
$$F_n^*(x) = \frac{1}{n} \sum_{i=1}^n \psi_x(X_i),$$

where

$$\psi_x(a) = 0, \qquad x \le a$$

$$= 1, \qquad x > a.$$

Thus $F_n^*(x)$ is 1/n times the number of X_1, \dots, X_n which are less than x. We define the distance $\delta(G_1, G_2)$ between the two distribution functions G_1 and G_2 as

(2)
$$\delta(G_1, G_2) = \sup_x |G_1(x) - G_2(x)|.$$

Let $P\{\ \}$ denote the probability of the relation in braces. The theorem of Glivenko-Cantelli (see, for example [1], page 260) states that

(3)
$$P\{\lim_{n\to\infty} \delta(F(x), F_n^*(x)) = 0\} = 1.$$

Let $Y=X_1^1, \dots, X_1^k, X_2^1, \dots, X_2^k, \dots$, ad inf. be a sequence of independent chance variables such that X_1^i, X_2^i, \dots , ad inf. have the same distribution function (say $F_i(x)$), $i=1,\dots,k$. Let q_i , $i=1,\dots,k$, be real parameters. We shall prove the following generalization of the theorem of Glivenko-Cantelli. Theorem. Let $q=(q_1,\dots,q_k)$. Let $F(x\mid q)$ be the distribution function of $\sum_{i=1}^k q_i X_1^i$. Let $F_n^*(x\mid q)$ be the empiric distribution function of

$$\left(\sum_{i=1}^k q_i X_i^i\right), \qquad j = 1, \dots, n.$$

Then

(4)
$$P\{\lim_{n\to\infty}\sup_{q}\delta(F(x\mid q), F_n^*(x\mid q)) = 0\} = 1.$$

This stronger version of the Glivenko-Cantelli theorem will prove useful in mathematical statistics for the purpose of estimating unknown distribution functions. We have already made use of essentially our result in [2], [3], and [4].

For typographical simplicity we shall carry through the proof for k = 2, and leave to the reader the easy verification of the fact that the method is valid for

Received 9/9/53.