Let X_{ni} be the characteristic function of the set A_{ni} . The sequence of random variables

$$X_{11}$$
, X_{21} , X_{22} , X_{31} , ...

converges to 0 in probability but not a.s. so that (ii) implies (iii), completing the proof.

3. Proof of Theorem 2. To prove that (a) implies (b), assume that (a) is true and (b) is false. From Theorem A there exists a sequence A_n of events with $0 < P(A_n) \to 0$. Let X_n be the characteristic function of the set A_n . For all n, $f(X_n) \neq 0$ because if $f(X_{n_0}) = 0$, then by (a) the sequence of random variables, each of which is X_{n_0} , must converge to 0 in probability, contradicting $P(A_{n_0}) > 0$. By (a), $[f(X_n/f(X_n))] = 1$ for all n, so that the sequence of random variables $X_n/f(X_n)$ cannot converge to 0 in probability. However, it must, because $P(A_n) \to 0$. A contradiction has been reached, hence (a) implies (b).

Assuming (b) it is easy to show that $f(X) = E \mid X \mid$ is a norm on \mathfrak{X} such that convergence in f is equivalent to convergence in probability. Theorem 2 is proved.

4. Acknowledgment. The author wishes to thank Professor M. Loève for suggesting this problem.

REFERENCES

- [1] D. Dugué, "L'existence d'une norme est incompatible avec la convergence en probabilité," C. R. Acad. Sci., Paris, Vol. 240 (1955), p. 1307.
- [2] M. Fréchet, "Généralites sur les Probabilités. Elements Aléatoires, Gauthier-Villars, 1935.
- [3] M. Loève, Probability Theory, D. Van Nostrand, New York, 1955.
- [4] E. Marczewski, "Remarks on the convergence of measurable sets and measurable functions," Colloquium Math., Vol. 3 (1955), pp. 118-124.
- [5] A. J. Thomasian, "Distances et normes sur les espaces de variables aléatoires," C. R. Acad. Sci., Paris, Vol. 242 (1956), p. 447.

DIVERGENT TIME HOMOGENEOUS BIRTH AND DEATH PROCESSES'

BY PETER W. M. JOHN

University of New Mexico

1. Introduction. In a time-homogeneous birth and death process a population is considered, the size of which is given by the random variable n(t) defined on the non-negative integers. If at time t the population size is n, the probability that a birth occurs in the time interval $(t, t + \Delta t)$ is $\lambda_n t + o(\Delta t)$; the probability of a death is $\mu_n t + o(\Delta t)$, and the probability of the occurrence of more than one

Received January 17, 1956; revised September 24, 1956.

¹ These results were included in a dissertation submitted to the University of Oklahoma in partial fulfillment of the requirements for the Ph.D. degree in mathematics, August, 1955.