REFERENCE

[1] D. A. DARLING, "On a class of problems related to the random division of an interval," Ann. Math. Stat., Vol. 24 (1953), pp. 239-253.

GENERALIZED D_n STATISTICS¹

By A. P. Dempster

Harvard University

1. Introduction. The purpose here is to present simplified derivation methods which can be applied to generalizations of some distributions derived by Birnbaum and Tingey [1] and Birnbaum and Pyke [2]. In the case of [1] the generalization is explicitly written down as equation (5). Other authors have noticed this generalization; it appears implicitly in equation (31) of Chapman [3] and is given explicitly by Pyke [4]. However the derivation given in the following section differs from the methods of other authors and gives a probabilistic meaning to each term in the summation formula (5). In the case of [2] explicit formulas are given for a special case of our generalization different from that considered by Birnbaum and Pyke.

Consider a sample of n from the uniform distribution on (0, 1). Denote the sample c.d.f. by $F_n(x)$. The relevant part of the curve $y = F_n(x)$ is entirely contained by the closed unit square $0 \le x \le 1$ and $0 \le y \le 1$, and within this square the population c.d.f. is represented by the line y = x. For $0 \le \delta < 1$ and $0 < \epsilon < 1$ the line joining $(0, \delta)$ and $(1 - \epsilon, 1)$ will be referred to as barrier (δ, ϵ) . A set of such barriers moving away from y = x may be conceived of, and we are concerned with a set of probabilistic questions about which barriers are crossed and where by the curve $y = F_n(x)$ as it passes from (1, 1) to (0, 0)

2. The basic derivation. Denote by $f_j(0 \le j \le n-1)$ the probability that $y = F_n(x)$ crosses the barrier (δ, ϵ) at level y = (n-j) / n not having crossed it at any level y = (n-i) / n for i < j. Denote the abscissa of the intersection of the barrier (δ, ϵ) and level y = (n-j) / n by m_j . Then it is easily checked that

(1)
$$m_j = \frac{1-\epsilon}{1-\delta} \left(1-\delta-\frac{j}{n}\right).$$

Finally, let us use b(r, s, p) for the binomial probability $\binom{s}{r} p^r (1-p)^{s-r}$ An expression for f_j may be derived as follows. Given that $y = F_n(x)$ passes

Received May 27, 1958; revised November 24, 1958.

¹ Work done in part at Princeton University while the author was supported by the National Research Council of Canada, and in part at Bell Telephone Laboratories while the author was a Member of Technical Staff.