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1. Summary. Consider PBIB designs based on triangular association scheme
witho =n(n—1)/2,b=(n—-1)(n—-2)/2)k=nr=n—2,\ =1, A = 2,
It is established here that a necessary condition for the existence of these PBIB
designs is the existence of symmetrical triangular PBIB designs with » = b =
(n—=1n—-2)/2,r=k=mn— 2\ =1, A\ = 2. Atiqullah [1] showed that
the same condition is necessary for the existence of BIB designs with » =
n—1m-—-2)/2,b=n(n—1)/2,k =n— 2,r = n, \ = 2. It is shown fur-
ther that for an infinite number of values for n this condition cannot be satisfied.

2. Introduction. It is well known that for the triangular PBIB designs with
v=m—1)(n — 2)/2

(1) INNII — popln—sz(n—l)(n—4)IZ

where N denotes the incidence matrix of the design and the p’s are the character-
istic roots. If the design is symmetric [NN’| has to be a perfect square. Ogava [3]
showed that a necessary condition for [NN’| to be a perfect square is that

0p = (=L W)™ o — 1)y, — 2)575(—1, ) T DD
. (92 ’ 2)P(p2 y = 2) P(pZ y W — 3) ;_2 = +1 for all primes b,

where the expressions of the form (a, 8), are the Hilbert symbols. It will be
shown that, for an infinite number of values of n, 0, = —1.

3. Conditions for the existence of some PBIB designs.

LeMMA 1. If there exists a PBIB design based on a triangular association scheme
witho =n(n —1)/2,b=(n—1)n—2)/2,k=nr=n—2,M=1N=2
then each of the blocks contains exactly one pair of the (n — 1) (n — 1) /2 pairs of
each of the n — 1 mutually first associate varieties appearing in the same row of the
association scheme.

Proor. Assume without loss of generality that a row of the association scheme
contains the varieties 1, 2, - -+, n — 1. Suppose further that there is a block of
the design which contains the varieties 1, 2, - -- k, & > 2. Then there must be
(n — 3)k additional blocks each containing exactly one of the varieties 1 through
k. Since each of the varieties has to appear n — 2 times the minimum number of
blocks to be added is equal to the sum of the integers from n — 2 — k down to
1. This sum, added to the sum obtained from the blocks previously counted,
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