, 1.11 · ·

A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION

By Torbjörn Thedéen

Royal Institute of Technology, Stockholm

In a paper [1] by Leo Breiman it is shown that, under rather weak assumptions, the number of cars in an arbitrary interval I with the length |I| will be asymptotically Poisson distributed with the mean $\sigma |I|$, as the time t tends to infinity. Here σ is a constant. Under the same assumptions as those of Breiman it will here be shown that the cars as the time tends to infinity will be distributed according to a Poisson process with the intensity σ . The assumptions and notations will be the same as those of [1]. By the well known representation of a Poisson process we will formulate our main theorem in the following way:

Theorem. Let I_1 , I_2 , \cdots I_n be a disjoint but otherwise arbitrary intervals on the space axis, with their respective lengths $|I_1|$ $|I_2|$, \cdots $|I_n|$. Under the assumptions (a), (b) and (c) of [1] then

$$\lim_{t\to\infty} P\{N_t(I_{\nu}) = j_{\nu}, \nu = 1, 2, \cdots n\} = \prod_{\nu=1}^n (\lambda_{\nu}^{j_{\nu}}/j_{\nu}!)e^{-\lambda_{\nu}},$$

where $\lambda_{\nu} = \sigma |I_{\nu}|$ and where $N_t(I_{\nu})$ is the number of cars at time t in the interval I_{ν} . For the proof we need a slight generalization of the theorem of Section 3 in [1]. Consider for every m an infinite sequence of trials $Z_1^{(m)}$, $Z_2^{(m)}$, \cdots , which are independent for fixed m and result in one of the outcomes "success of type $\nu'' = S_{\nu}$, $\nu = 1, 2, \dots$, n or failure F with the corresponding probabilities $P(Z_k^{(m)} = S_{\nu}) = P_{k\nu}^{(m)}$, $\nu = 1, 2, \dots$, n, and $P(Z_k^{(m)} = F) = 1 - \sum_{\nu=1}^{n} P_{k\nu}^{(m)}$. Let the number of S_{ν} in the *m*th sequence be denoted by $N_{\nu m}$.

LEMMA. If

(i)
$$\sum_{k=1}^{\infty} P_{k\nu}^{(m)} \to \lambda_{\nu} \text{ as } m \to \infty \text{ for } \nu = 1, 2, \cdots, n,$$

(ii) $\sup_{k} P_{k\nu}^{(m)} \to 0 \text{ as } m \to \infty \text{ for } \nu = 1, 2, \cdots, n,$

then for fixed j_1, j_2, \dots, j_n

$$\lim_{m\to\infty} P\{N_{\nu m}=j_{\nu}; \quad \nu=1,2,\cdots,n\} = \prod_{\nu=1}^{n} (\lambda_{\nu}^{j_{\nu}}/j_{\nu}!)e^{-\lambda_{\nu}}.$$

The lemma is very easily shown by using the technique of generating functions for n-dimensional random variables. For sake of completeness the proof is given in the appendix.

In the proof of the main theorem we have then only to show that

(i)
$$\lim_{t\to\infty} \sum_{k=1}^{\infty} P\{X_k(t) \in I_{\nu} \mid X_1, X_2, \cdots\} = \lambda_{\nu}$$

(ii)
$$\lim_{t\to\infty} \sup_k P\{X_k(t) \in I_\nu \mid X_1, X_2, \cdots\} = 0$$
 for $\nu = 1, 2, \cdots, n$.

Received October 3, 1963.

1823