ON THE PROBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN D[0, 1]¹

By J. SETHURAMAN²

Michigan State University and Stanford University

1. Introduction. Let (Ω, S, P) be a probability measure space. Let $X_1(\omega)$, $X_2(\omega)$, \cdots be a sequence of B-measurable random variables in $\mathfrak X$ which are indedependently and identically distributed with common distribution $\mu(\cdot)$. Here $\mathfrak X$ is a separable complete metric space and B is the class of all Borel subsets. Let $\mu(n, \omega, \cdot)$ be the empirical probability measure of $X_1(\omega)$, $X_2(\omega)$, \cdots , $X_n(\omega)$, namely, the probability measure that assigns masses 1/n at each of the points $X_1(\omega)$, $X_2(\omega)$, \cdots , $X_n(\omega)$.

Let f(x) be any measurable real-valued function on \mathfrak{X} with $\int \exp(sf(x))\mu(dx)$ $< \infty$ for all s. It has been shown by Cramér [3], Chernoff [2], Bahadur and Ranga Rao [1], etc. that

(1)
$$(1/n) \log P\{\omega : |\int f(x)\mu(n, \omega, dx) - \int f(x)\mu(dx)| \ge \epsilon\} \to \log \rho(f, \epsilon)$$

where, if $E(g) = \int g(x)\mu(dx)$ for any function g ,

$$\begin{array}{ll} \rho(f,\,\epsilon)\,=\,\max\,\{\inf_{s\,\geqq\,0}\exp\,[\,-\,s\epsilon\,-\,sE(f)]E(e^{sf}),\\ (2) & \inf_{s\,\le\,0}\exp\,[s\epsilon\,-\,sE(f)]E(e^{sf})\}. \end{array}$$

Now let $\mathfrak X$ be a separable Banach space and let

- (i) $\int \exp(s||x||)\mu(dx) < \infty$ for all s and
- (ii) $\int x^*(x)\mu(dx) = 0$ for each continuous linear functional x^* on \mathfrak{X} . Sethuraman [6] (Theorem 7) has shown that

$$(3) \quad 1/n \log P\{\omega : \|(1/n)(X_1(\omega) + \cdots + X_n(\omega))\| \ge \epsilon\} \to \log \rho(\mathfrak{X}_1^*, \epsilon)$$

where $\mathfrak{X}_1^* = \{x^* : ||x^*|| = 1\}$ and for any collection, \mathfrak{F} , of functions $\rho(\mathfrak{F}, \epsilon) = \sup_{f \in \mathfrak{F}} \rho(f, \epsilon)$.

Now, let \mathfrak{X} be the space D[0, 1] of all real valued functions x(t) on [0, 1] with the properties

- (i) x(t-0) and x(t+0) exist for 0 < t < 1 and x(t) = x(t+0)
- (ii) x(t) is continuous at t = 0 and t = 1.

We endow this space with the J_1 -topology of Skorohod [7] and it becomes a separable complete metric space. (See Section 2 for more details.) Let $||x|| = \sup_{0 \le t \le 1} |x(t)|$. The main result of this note, proved in Section 3, can now be stated.

Received 12 March 1964; revised 24 July 1964.

¹ Reproduction in whole or in part is permitted for any purpose of the United States Government. Prepared with the support of the Army Research Office, Grant No. DA-ARO (D)-31-124-G485.

² On leave from the Indian Statistical Institute, Calcutta.