A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS¹

By Charles Stone

University of California, Los Angeles

1. Introduction and statement of results. Local limit theorems for asymptotically stable lattice distribution functions have been obtained by Gnedenko [2], [3] for the one-dimensional case and by Rvačeva [6] for the multi-dimensional case. We shall here obtain analogous results for nonlattice distribution functions.

Let F be a stable distribution function in d-dimensional space R^d which has a density p. Let F_1 be a distribution function in the domain of attraction of F, let F_n denote the n-fold convolution of F_1 with itself, and let B_n and A_n be constants in R and R^d respectively such that

(1)
$$\lim_{n\to\infty} F_n(B_n(x+A_n)) = F(x), \qquad x \in \mathbb{R}^d.$$

Let f and f_1 denote the characteristic functions of F and F_1 respectively. We say that F_1 is *nonlattice* if

$$|f_1(\theta)| < 1, \qquad \theta \varepsilon R^d - (0).$$

We say that F_1 is strongly nonlattice if

(3)
$$e^{-c_1 d} = \lim \sup_{|\theta| \to \infty} |f_1(\theta)| < 1.$$

It is clear that F_1 is nonlattice if it is strongly nonlattice.

Note that lattice distribution functions and nonlattice (as defined here) distribution functions do not exhaust all possibilities unless d=1, since a distribution function can be lattice in some directions, but not in others. The last possibility will not be considered in this paper.

For $x = (x^1, \dots, x^d) \in \mathbb{R}^d$ and h > 0, let P(x, h) and $P_n(x, h)$ denote the measures assigned by F and F_n respectively to the set

$${y = (y^1, \dots, y^d)|x^k \le y^k < x^k + h \text{ for } 1 \le k \le d}.$$

If d = 1, for example, then P(x, h) = F(x + h) - F(x); while if d = 2, then $P(x, h) = F(x^1 + h, x^2 + h) - F(x^1 + h, x^2) - F(x^1, x^2 + h) + F(x^1, x^2)$.

It follows from (1) that

(4)
$$\lim_{n\to\infty} P_n(B_n(x+A_n), B_nh) = P(x, h), \quad x \in \mathbb{R}^d \quad \text{and} \quad h > 0.$$

The purpose of this paper is to prove the following Theorem. If F_1 is nonlattice, then²

(5)
$$P_n(B_n(x+A_n), B_nh) = P(x, h) + o_n(1)(h^d + B_n^{-d}).$$

Received 28 July 1964.

546

¹ Research supported by National Science Foundation Grant NSF-GP-1606.

² We use in this paper the convention that the behavior of any "o" term is uniform in all variables not listed in the term or previously fixed.