SOME TESTS FOR THE INTRACLASS CORRELATION MODEL

By M. S. Srivastava

University of Toronto

1. Introduction. Let $X^{(i)}$ $(i = 1, 2, \dots, k)$ be independent normal random p-vectors with mean vectors μ_i and nonsingular covariance matrices Σ_i . The problems with which we are concerned here are related to the comparison of dispersion matrices Σ_i 's, when each dispersion matrix takes the intraclass correlation form, i.e.,

(1)
$$\Sigma_i = \sigma_i^2 [(1 - \rho_i)I + \rho_i ee'],$$

where $e' = (1, 1, \dots, 1)$, and I is an identity matrix of order $p \times p$. For this model, the problem of comparing dispersion matrices Σ_i reduces to that of comparing σ_i 's and ρ_i 's of k populations. For some related results on this model, refer to Wilks [8], Geisser [1], Votaw [7], and Selliah [6].

- 2. Problems. With the help of Roy's union-intersection principle [4], we propose in this paper test procedures for the following problems:
- (i) To test the hypothesis $H: \rho_1 = \cdots = \rho_k$; $\sigma_1 = \cdots = \sigma_k$, against the alternative $A: \rho_i \neq \rho_j$; $\sigma_i \neq \sigma_j$, $i, j = 1, 2, \cdots, k, i \neq j$.
- (ii) To test the hypothesis $H: \rho_i = 0, i = 1, 2, \dots, k$, against the alternative $A: \rho_i \neq 0, i = 1, 2, \dots, k$.
- (iii) To test the hypothesis $H: \rho_1 = \cdots = \rho_k$, against the alternative $A: \rho_i \neq \rho_j$, $i, j = 1, 2, \cdots, k, i \neq j$.
- 3. Reduction to canonical form. Let S, a $p \times p$ matrix, have the Wishart distribution with mean $n\Sigma$ and degrees of freedom n, n=N-1, and let X be a normal random p-vector with mean vector μ and covariance matrix Σ . In addition, let S be independent of X. For the intraclass correlation model Σ , there exists an orthogonal matrix Γ with first row $e'/p^{\frac{1}{2}}$ such that $\Gamma\Sigma\Gamma'=\mathrm{diag}(\alpha,\beta,\cdots,\beta)$, where

(2)
$$\alpha = \sigma^2[1 + (p-1)\rho], \quad \beta = \sigma^2(1-\rho).$$

Let $W = \Gamma S \Gamma'$. Then the pdf of W is

(3)
$$p(W) = \text{Const. } \alpha^{-n/2} \beta^{-m/2} |W|^{(n-p-1)/2} \exp \left\{ -\frac{1}{2} w_{11} / \alpha - \frac{1}{2} \sum_{r=2}^{p} w_{rr} / \beta \right\},$$

where m = n(p-1). Let $Z = \Gamma X$, $\eta = \Gamma \mu$. Then z_1 is $N(\eta_1, \alpha)$, and z_r is $N(\eta_r, \beta)$, $r = 2, \dots, p$. The z_r 's are independently distributed for all $r = 1, 2, \dots, p$.

Following Olkin and Pratt [3], we can obtain statistics u and v sufficient for α and β and distributed independently as $\alpha \chi_{\alpha}^{2}$ and $\beta \chi_{b}^{2}$ where the degrees of freedom a and b depend on our knowledge of μ . For μ completely unknown,

Received 1 July 1964; revised 29 June 1965.